کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو



 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 



فهرست مطالب:

مقدمه………………………………….. 3

فصل اول: مقدمه‌ای بر كیهان‌شناسی

1-1 اصول كیهان‌‌شناسی………………………………….. 7

1-2  انرژی تاریك……………………………………. 7

1-3ماده تاریک……………………………………. 8

1-4  تابش زمینه ریز موج کیهانی………………………………….. 8

1-6  اصول نسبیت عام…………………………………. 9

1-6-1اصل هم ارزی………………………………….. 9

1-6-2  اصل ماخ………………………………….. 10

1-6-3  اصل هموردای عام…………………………………. 11

1-7  نسبیت عام…………………………………. 11

1-8   مختصات همراه و فاكتور مقیاس……………………….. 14

1-9  متریک رابرتسون واکر………………………………….15

1-10  پارامتر هابل………………………………….. 15

1-11  پارامتر كند شوندگی………………………………….. 16

1-12  معادلات فریدمان………………………………….. 18

1-13  پارامتر چگالی………………………………….. 18

1-14  معادله شتاب…………………………………… 20

1-15   معادله حالت…………………………………… 20

1-16   تشخیص‌گر حالت…………………………………… 21

1-17  افق‌های کیهانی………………………………….. 22

1-17-1  افق ذره………………………………… 22

1-17-2  افق رویداد…………………………………. 22

1-17-3   افق ظاهری………………………………….. 23

فصل دوم: نگاهی به نسبیت عام و نظریه برنز دیكی

2-1  معادله میدان انیشتین………………………………….. 27

2-2   نظریه برنز دیکی………………………………….. 33

فصل سوم: كیهان‌شناسی برنز دیكی همراه با مدل‌های انرژی تاریك

3-1   معادلات عمومی………………………………….. 42

3-1-1   معادلات بقاء………………………………… 42

3-1-2   كنش……………………………………. 43

3-1-3   معادلات برنز دیكی شبه فریدمان……………………….. 44

3-2  مدل ایج گرافیک جدید برهمکنشی انرژی تاریک در کیهان شناسی برنز دیکی…….4

3-2   مدل گوست برهمکنشی انرژی تاریک در کیهان‌شناسی برنز دیکی…………….48

3-3   مدل انرژی تاریک گوست تعمیم یافته در کیهان‏شناسی برنز دیکی………….50

3-4   میدان اسكالر كوینتسنس در میدان اسكالر برنز دیكی…………………….. 54

فصل چهارم: بررسی مدل هولوگرافیک با انواع افق‌ها

4-1   مدل هولوگرافیک انرژی تاریک در کیهان‌شناسی برنز دیكی با افق رویداد……61

4-2   انرژی تاریک هولوگرافیک در کیهان‌شناسی برنز دیکی با قطع گراند-اولیور…….64

4-3    مدل انرژی تاریک هولوگرافیک در کیهان‌شناسی برنز دیكی با قطع افق ظاهری……68

فصل پنجم: نتیجه‌گیری

نتیجه‌گیری………………………………….. 82

فهرست منابع و مؤاخذ…………………………………. 84

 

مقالات و پایان نامه ارشد

 

چکیده:

در این پایان‌نامه ما ابتدا مروری بر كیهان‌شناسی و معادلات حاكم بر آن داشته و  نظریه گرانش انیشتن و نظریه برنز دیكی را مورد بررسی قرار می‌دهیم. همچنین مدل‌های مختلف انرژی تاریک از جمله مدل كوینتسنس، مدل ایج‌گرافیک جدید، مدل گوست برهمكنشی و مدل گوست تعمیم‌یافته را در كیهان‎شناسی برنز دیكی مورد مطالعه قرار خواهیم داد و خواهیم دید تمام این مدل‌ها در حضور برهمكنش انبساط شتابدار را راحتتر از گرانش انیشتین نتیجه خواهند داد. در انتها نیز مدل هولوگرافیک را با انواع افق‌ها بررسی می‌كنیم. كار اصلی ما در این پایان‌نامه بررسی مدل هولوگرافیک با افق ظاهری است. كاربرد كیهانی چگالی انرژی برهمكنشی انرژی تاریک را در كیهان‌شناسی برنز دیكی مورد مطالعه قرار دادیم و پارامتر معادله حالت و پارامتر كندشوندگی را برای مدل هولوگرافیک انرژی تاریک به دست آوردیم. سپس افق ظاهری اندازه‌گیری شده در كره افق را به عنوان قطع مادون قرمز انتخاب كردیم و یافتیم هنگامی‌كه چگالی انرژی هولوگرافیک با معادله میدان برنز دیكی تركیب می‌شود، پارامتر معادله حالت غیر برهمكنشی انرژی تاریک می‌تواندخط فانتوم را قطع كند. هنگامی‌كه برهمكنش بین انرژی تاریک و ماده تاریک در نظر گرفته شود انتقال پارامتر معادله حالت انرژی تاریک به رژیم فانتوم زودتر از هنگامی است كه از معادله میدان انیشتین استفاده می‌كنیم.

مقدمه:

تاریخچه كیهان‌شناسی به عنوان یک علم به سال 1915 بعد از پیدایش نسبیت عام باز می‌گردد. قبل از نسبیت عام توسط انیشتین نظریات مبهمی توسط فلاسفه و فیزیكدانان در مورد پیدایش و تحول كیهان ارائه شده بود اما به دلیل نداشتن پشتوانه محكم نظری و تجربی، سست و غیر مطمئن بود. در سال 1920 ادوین هابل انبساط عالم را كشف كرد. با این كشف به همراه كشف زمینه ریز موج كیهانی در سال1960 كیهان‌شناسی وارد مرحله مشاهده‌ای شد اما همچنان بر اصل كوپرنیكی، كه می‌گوید جهان هیچ مركزی ندارد، استوار است. بررسی دقیق افت و خیزهای كوانتومی در زمینه ریز موج كیهانی كه نخستین نشانه‌ تشكیل ساختار در كیهان می‌باشد، امكان مطالعه دقیق رشد ناهمگنی‌ها و تشكیل ساختارهای اولیه را فراهم آورد. ارائه نظریه تورم در سال 1918 و تكمیل آن در سال‌های بعد منشأ كوانتومی این افت و خیزها را تا حدی روشن ساخت. تعداد زیادی از مشاهدات كیهان‌شناسی شبیه[1] و[2] از انبساط شتابدار تندشونده جهان حكایت دارند. بررسی دقیق‌تر این داده‌های كیهانی نشان داد كه برای رسیدن به یک تصویر سازگار از ساختارهای بزرگ كیهانی و نحوه تشكیل آن‌ ها لازم است كه مقادیر قابل توجهی ماده و انرژی به صورت تاریک در لابلای ستارگان و كهكشان‌ها وجود داشته باشد به گونه‌ای كه ماده مرئی تنها حدود 4 درصد از كل ماده و انرژی كیهان را به خود اختصاص می‌دهد! پس عامل این انبساط چیز دیگری است. ماده‌ای با فشار منفی كه عامل ناشناخته این انبساط است. بنابراین كشف ماهیت ماده و انرژی تاریک یكی از بزرگترین تحولات فیزیک و كیهان‌شناسی خواهد بود كه ممكن است درك ما را از مكانیزم‌های بنیادی طبیعت دچار تحول كند [1]. برای توجیح این مشكل نظریات زیادی در چند دهه اخیر ارائه شد. اولین مدل مطرح شده است كه در آن از ثابت كیهان‌شناسی به عنوان انرژی خلأ یاد شده است [2]. همچنین مدل‌های دیگری نیز وجود دارند كه منطبق بر اصل هولوگرافیک هستند از قبیل مدل هولوگرافیك، ایج گرافیک و…

فصل اول: مقدمه ای بر کیهان شناسی

1-1- اصول کیهان شناسی

برای بررسی کیهان اصولی را به نام اصل کیهان‌شناسی[1] فرض می‌کنند:

۱-جهان همگن[2] است.

۲-جهان همسانگرد[3] است.

3-هیچ نقطه‌ای در جهان بر نقاط دیگر ارجح نیست.

بنا به شرایط اولیه و جزئیاتی که نظر گرفته می‌شود الگوهای متفاوتی برای سرآغاز و سرانجام کیهان پیشنهاد شده است. الگوی کیهان‌شناختی که امروزه مورد پذیرش اکثریت جامعه علمی است به مدل مهبانگ مشهور است. طبق این نظریه که مقبول‌ترین نظریه در پیدایش جهان است، همه ماده و انرژی که هم‌اکنون در جهان وجود دارد زمانی در گوی کوچک بی‌نهایت سوزان ولی فوق‌العاده چگال متمرکز بوده است. این آتشگوی کوچک حدود 15 میلیارد سال قبل منفجر شد و همه مواد در فضا پخش شدند. با گذشت زمان این گسترش و پراکندگی ادامه یافت. تراکم توده‌هایی از این مواد در نواحی مختلف باعث بوجود آمدن ستارگان و کهکشان‌ها در فضا شد، ولی گسترش همچنان ادامه دارد.

2-1- انرژی تاریک

داستان انرژی تاریک از سال 1998 آغاز شد. در آن زمان دانشمندان دریافتند که بسیاری از کهکشانهای دور دست با سرعتی بسیار بیشتر از آنچه که محاسبات موجود پیش بینی کرده‌اند، از یکدیگر دور می‌شوند. تا قبل از این، کیهان‌شناسان همگی فکر می‌کردند که از سرعت گسترش به دلیل وجود گرانش بین کهکشان‌ها، کاسته شده است. به عبارت دیگر محاسبات دقیقا نشان دهنده آن بود که سرعت انبساط جهان لحظه به لحظه در حال افزایش است و از سرعت این انبساط کاسته نمی‌شود. ستاره شناسان به این نتیجه دست یافته‌اند که افزایش سرعت گسترش کائنات وابسته به عاملی است که بر خلاف گرانش عمل می‌کند. این عامل به دلیل ماهیت ناشناخته‌اش انرژی تاریک نام گرفت. این عامل حدود 70% ماده و انرژی موجود در جهان را شامل می‌شود.

3-1- ماده تاریک

در سال 1934 فریتس تسویکی منجم امریکایی سوئیسی تبار با تحلیل داده های رصدی مربوط به مجموعه‌های کهکشانی به این نتیجه رسیدند که ماده موجود در این مجموعه در حدود 10 برابر ماده مرئی آن‌ ها است و فقط این ماده مرئی قابل روئت است. تحلیل تسویکی بر پایه اندازه گیری سرعت کهکشان‌های منفرد مجموعه بود. اگر ماده نامرئی وجود نمی‌داشت تا کنون اکثر این مجموعه های کهکشانی از هم می‌پاشیدند. در آغاز این ماده را “ماده گم شده” نامیدند. اما اصطلاح درستی نبود، چیزی گم نشده بود، بلکه وجود داشت ولی ما نمی‌توانستیم آن را ببینیم. از این رو اصطلاح ماده تاریک[1] متداول شد. از این پس یک سوال اساسی مطرح شد: ماده تاریک چیست؟

4-1- تابش زمینه ریز موج کیهانی

مدل پیشنهادی برای جهان اولیه به عنوان تركیبی از ماده نسبیتی وتابش الكترومغناطیسی در حال تعادل برای اولین بار توسط گاموف[1] فیزیکدان روسی و همکارانش در سال 1945 برای توصیف سنتز هسته‌‍‌ای ارائه شد [3]. گاموف و همكارانش از طریق ذره‌زائی در عالم اولیه حساب کردند که امروزه دمای تابش زمینه باید حدود 25 درجه کلوین یعنی 25 درجه بالای صفر مطلق باشد. در آن زمان کسی این کار نظری را جدی نگرفت. در سال 1965، دیکی[2] فزیکدان مشهور از دانشگاه پرینتستون و همکارانش این مسئله را دوباره بررسی کردند و به دمایی کمتر از دمایی که گاموف محاسبه کرده بود رسیدند. در همان سال در آزمایشگاه بل، دو نفر به نامهای پنزیاس[3] و ویلسون[4] به طور تصادفی همهمه‌ایی را که در تمام جهات مزاحم امواج بود کشف کردند [4]. دیکی و همکارانش به سرعت متوجه شدند که این همان تابشی است که آنها کشف کردند. ماهوارهCOBE  در چند سال گذشته تحقیق نهایی را در مورد همخوانی تابش رصدی با محاسبات نظری انجام داده و دمای 7/2 درجه کلوین را اندازه گرفته است. تابش پس زمینه كیهانی ابتدا به شدت گرم بوده و به خاطر انبساط جهان دارای انتقال به سرخ شده و به دمای كنونی رسیده است. مشاهدات هاکی از آن است که شدت CMB از منحنی تابش حرارتی جسم سیاه با ناهمسانگردی[5] به اندازه تبعیت می‌کند.

5-1- اصول نسبیت عام

1-5-1- اصل هم ارزی

اساس نسبیت عام یک برداشت ساده از طبیعت است. آسانسوری را تصور کنید که وزنه تعادلش پاره شده است و آزادانه سقوط می‌کند. شخصی که در این آسانسور است احساس بی وزنی می‌کند، یعنی اگر روی ترازو ایستاده باشد عقربه ترازو صفر را نشان خواهد داد. پس نیروی گرانش چه شده است؟ قطعا از بین نرفته است! هر شیئی را که در این آسانسور رها کنید، در همان محل اولیه خود می‌ایستد. پس اگر دسترسی به داخل آسانسور نداشته باشید خواهید گفت که هیچ نیرویی بر اشیاء داخل آسانسور وارد نمی‌شود و چون می‌دانیم که نیروی گرانش به سمت پایین وارد می‌شود، باید نتیجه بگیریم که نیروی دیگری برابر اما در خلاف جهت گرانش بر اشیاء وارد می‌شود که گرانش را خنثی می‌کند. این نیرو ناشی از وجود شتاب برابر، یعنی سقوط آزاد، به سمت پایین است، که نیرویی برابر گرانش اما به سمت بالا بر اشیاء وارد می‌کند. پس گرانش هم ارز است با شتاب. انیشتین این واقعیت را اصل هم ارزی[1] نامید. این اصل مبنای فرمول‌بندی وی از برهمکنش گرانشی شد.

اصل هم‌ارزی و مثال فوق تنها زمانی درست است كه جرم لختی (جرمی كه طبق قانون دوم نیوتن مشخص می‌كند كه شما در اثر یک نیرو چقد شتاب می‌گیرید) و جرم گرانشی (جرمی كه طبق قانون گرانی نیوتن مشخص می‌كند كه شما چقدر نیروی گرانشی احساس می‌كنید)، یكسان باشند. اگر این دو جرم برابر باشند، همه اجسام در میدان گرانشی، مستقل از اینكه جرم آنها چقدر باشد، با یک آهنگ می‌افتند. اگر این اصل حقیقت نداشت، بعضی از اجسام تحت تاثیر گرانش، سریع‌تر می‌افتادند. در این صورت شما می‌توانستید كشش گرانش را از شتاب یكنواخت كه در آن همه چیز با یک آهنگ می‌افتد، تشخیص دهید [5].

این نظریه پیامدهای مهمی دارد. با حذف نیرو، و وارد کردن مفهوم میدان، نظریه گرانش به یک نظریه میدان تبدیل می‌شود مانند الکترومغناطیس.

2-5-1- اصل ماخ

ارنست ماخ، فیزیكدان و فیلسوف اتریشی در اثر خود به نام علم مكانیك[1] كوشش نمود تا نظریه نیوتنی را با نظریه جدیدی جایگزین كند كه فاقد جنبه‌های مطلق‌نگری باشد. به اعتقاد او یک نظریه نباید حاوی هیچ ساختار مطلقی باشد. نظیر سایر نسبی گرایان از دیدگاه ماخ فضا مفهومی انتزاعی از موقعیت ذرات نسبت به یكدیگر است. به عبارت دیگر قرار گرفتن ذرات در كنار هم است كه فاصله و فضا را تعریف می‌كند. انیشتین[2] از جمله معاصرین ماخ است كه شدیدا تحت تأثیر افكار و آراء وی امیدوار به یافتن این نیروهای ماخی بوده و نظریه نسبیتی گرانش خود را در راستای رسیدن به نظریه‌ای كه تأمین كننده نظرات ماخ باشد فرموله نمود.

اصل ماخ[3]، اساسی‌ترین اصل نسبت عام به صورت‌های مختلفی تعبیر می‌شود. قوی‌ترین صورت این اصل این است که ماده هندسه را تعیین می‌کند و عدم وجود آن به معنای عدم وجود هندسه است. نسبیت عام با این صورت اصل ماخ سازگار نیست. زیرا اگر ماده وجود نداشته باشد، معادلات نسبیت عام دارای حل هستند و هندسه‌های مختلفی را بیان می‌کنند.

 صورتی از اصل ماخ که با نسبیت عام سازگاری ندارد و نزدیک‌ترین صورت به بیان ماخ است این‌گونه است که: یک جسم در فضای کاملا تهی، هیچ  خاصیت هندسی به خود نمی‌گیرد اما صورتی از اصل ماخ که نسبیت عام با آن سازگار است عبارت است از :

 توزیع ماده چگونگی هندسه را تعیین می‌کند. ماده تعیین می‌کند که فضا چگونه خمیده شود [6].

[1]the Science of Mechanics  

[2]Albert Einstein

[3]Mach’sprinciple

[1] Principle of Equivalence

[1] Gamow

[2]Dick

[3]Arno Penzias

[4] Robert Wilson

[5] anisotropy

[1] Dark Matter (DM)

موضوعات: بدون موضوع  لینک ثابت
[دوشنبه 1399-10-01] [ 10:52:00 ق.ظ ]




1-1  مقدمه …………………………………………………………………………….. 2

1-2  معرفی مدل هسته­ ای …………………………………………………………………. 3

1-2-1  مدل قطره مایع ………………………………………………………………………. 3

1-2-2  مدل پوسته ­ای ………………………………………………………………………6

1-2-3  مدل خوشه ­ای ………………………………………………………………….. .8

فصل دوم تئوری مدل شبکه ­ای FCC ……………………………………………………

2-1  تاریخچه مختصری از تئوری ساختار هسته ­ای ………………………………….. 11

2-2  تئوری مدل شبکه ­ای FCC ……………………………………………………….

2-3  هم­ارزی بین ویژه حالت­های معادله شرودینگر و شبکه FCC ………………….

2-4  مدل ذره مستقل و قطره مایع در مدل شبکه ­ای FCC …………………………

2-5  خوشه آلفا در شبکه FCC ……………………………………………………….

2-6  جمع بندی………………………………………………………………………… 30

فصل سوم محاسبه خواص هسته با بهره گرفتن از مدل شبکه­ ای FCC از طریق کد NVS، معرفی مدل دابل- فولدینگ ومدل باس……31

3-1  مقدمه …………………………………………………………………………….. 32

3-1-1  انرژی بستگی ………………………………………………………………… 33

3-1-2  شعاع میانگین مربع RMS …………………………………………………

3-2  توزیع چگالی نوکلئون­ها ………………………………………………………… 40

3-3  مدل باس ……………………………………………………………………….. 44

3-3-1  مدل دابل- فولدینگ ……………………………………………………….. 45

3-3-1-1  توابع توزیع چگالی هسته­ ای ………………………………………… 47

3-3-1-2  بخش مرکزی برهم­کنش نوکلئون- نوکلئون …………………………….. 49

3-3-1-3  تابع وابسته به انرژی g(Ep) ………………………………………………

فصل چهارم محاسبات و نتیجه ­گیری ………………………………………………… 52

4-1  مقدمه …………………………………………………………………………. 53

4-2  محاسبه پتانسیل کل هسته برای واکنش­های ………………….. 54

4-2-1  محاسبه پتانسیل کولنی ……………………………………………… 54

4-2-2  محاسبه پتانسیل هسته­ ای …………………………………………. 55

4-3  سطح مقطع همجوشی واکنش­های…………………………………….. 61

4-4  پیشنهادات …………………………………………………………………. 70

 منابع………………………………………………………………………………. 71    

چکیده:

در این تحقیق به بررسی توانایی مدل شبکه ای FCC برای مطالعه برهم‌كنش همجوشی یون‌های سنگین پرداخته ایم.   و با بهره گرفتن از پیشگویی مدل شبکه ای FCC برای توزیع ماده هسته ای، هسته های برهم کنشی و نیروی برهم ‌كنش نوكلئون- نوكلئون M3Y-Paris پتانسیل كل را برای واكنش‌های ،  و  محاسبه كرده ایم.  نتایج حاصل از ارتفاع سد و محل سد در توافق خوبی با نتایج حاصل از سایر مدل های نظری مانند مدل های دابل-فولدینگ و باس می باشد. در نتیجه این مطالعه نشان می دهد مدل شبکه ای FCC می‌تواند مدل مناسبی برای مطالعه برهم‌كنش‌های همجوشی یون‌های سنگین باشد.

فصل اول: معرفی مدل های هسته ای

1-1- مقدمه

 

مقالات و پایان نامه ارشد

 

برای شرح خواص و حالت نوكلئون‌ها به تابع موج سیستم نیاز داریم. این كار برای هسته‌های ساده امكان‌پذیر می‌باشد، در حالی كه برای هسته‌های بزرگ بدست آوردن تابع موج كلی حتی اگر امكان‌پذیر هم باشد بسیار پیچیده‌تر از آن است كه مورد استفاده قرار گیرد. مدل ها قیاس بین هسته و سیستم‌های بسیار ساده فیزیكی می‌باشند كه از طریق آنها می‌توان به بررسی مسایل هسته‌ای پرداخت]1[.

در طی چندین سال و با استدلال‌های بی‌شمار مدل‌های مختلفی برای بررسی و مطالعه ساختار هسته توسط فیزیكدانان نظری معرفی شده است، اما از آنجایی كه مدل‌های مختلف هسته‌ای در توصیف كامل خواص هسته ناموفق بوده‌اند. امكان پیشنهاد مدلی واحد برای مطالعه ساختار هسته از بین رفته است.

مدل شبكه‌ای FCC[1] در سال 1937 توسط ویگنر[2] مدل‌سازی شده است]2.[ از آنجایی كه این مدل توانایی بازتولید خواص مدل‌های ذره مستقل[3]، قطره مایع[4] و خوشه‌ای[5] را دارا می‌باشد. ادامه این فصل به معرفی این مدل‌ها اختصاص یافته است. همچنین در فصل دوم به طور كامل مدل شبكه‌ای FCC را معرفی كرده ایم. معیار سنجش هر مدل شرح كامل خواص هسته‌ای و توافق مناسب با داده‌های تجربی می‌باشد، بنابراین در فصل سوم خواص هسته را از طریق این مدل مطالعه نموده ایم.  هدف اصلی معرفی این مدل ایجاد هسته از طریق مدل شبكه‌ای FCC و بررسی كارآمد بودن این مدل در برهم‌كنش یون‌های سنگین می باشد. در نتیجه، بعد معرفی سایر مدل‌ها نظیر مدل دابل-فولدینگ[6] و پتانسیل باس[7] برای محاسبه پتانسیل هسته‌ای با بهره گرفتن از نیروی برهم‌كنش نوكلئون- نوكلئون M3Y-Paris و توزیع نوكلئون‌ها از طریق این مدل پتانسیل هسته‌ای را محاسبه كرده‌ایم. بنابراین فصل چهارم این تحقیق به بررسی محاسبه پتانسیل هسته‌ای و سطح مقطع همجوشی واكنش‌های ،  و نتیجه‌گیری اختصاص یافته است.

2-1- معرفی مدل های هسته ای

از جمله مدل‌های متداول برای مطالعه ساختار هسته مدل‌های ذره مستقل و مدل دسته‌جمعی[1] می‌باشد.

مدل ذره مستقل: در مدل ذره مستقل ذرات در پائین‌ترین مرتبه صورت مستقل در یک پتانسیل مشترك حركت می‌كنند. مانند مدل لایه‌ای[2].

مدل دسته­ جمعی: در مدل دسته‌جمعی یا برهم‌كنش قوی، به علت برهم‌كنش‌های كوتاه‌برد و قوی‌بین نوكلئون‌ها، نوكلئون‌ها قویاً به یكدیگر جفت می‌شوند. مانند مدل قطره مایع]3[.   

1-2-1- مدل قطره مایع

از جمله مدل‌های اولیه برای مطالعه ساختار هسته مدل قطره مایع می‌باشد كه توسط بور[1] وفون وایكسر[2] از روی قطره‌های مایع پیشنهاد شده است. در این مدل هسته بصورت قطرات مایع باردار تراكم‌ناپذیر با چگالی زیاد درنظر گرفته می‌شود كه همچون مولكول‌ها در یک قطره مایع دائماً در حال حركت كاتوره‌ای می‌باشند و هسته تمامیت خود را با نیروهای مشابه كشش سطحی قطره مایع حفظ می‌كند. این مدل برای بیان روند تغییر انرژی بستگی نسبت به عدد اتمی و واكنش هسته‌ای مفید می‌باشد.

مدل قطره مایع برای این سوال كه چرا بعضی از نوكلئیدها مانند  با نوترون‌های كند شكافته می‌شوند و برخی دیگر  نوترون‌های سریع پاسخ ساده‌ای دارد كه علت آن را انرژی فعال‌سازی بیان می‌كند، یعنی حداقل میزان انرژی كه هسته بتواند به قدر كافی تغییر شكل دهد. تغییر شكلی كه نیروهای رانش الكتریكی بتواند بر نیروهای جاذبه الكتریكی غلبه كند. این مقدار انرژی فعال‌سازی را می‌توان به یاری تئوری ریاضی مدل قطره مایع محاسبه نمود كه رابطه تعمیم یافته و كلی انرژی بستگی را می‌دهد. یكی از مهمترین واقعیت‌های موجود در هسته ثابت بودن تقریبی چگالی هسته است. حجم یک هسته با عدد A (تعداد نوكلئون) متناسب می‌باشد و این واقعیتی است كه در مورد مایعات نیز صادق می‌باشد.

در شکل (1-1) متوسط انرژی بستگی بر حسب نوکلئون رسم شده است. نظم و ثبات انرژی بستگی به ازای هر نوکلئون بصورت تابعی از عدد جرمی A و ثابت بودن چگالی هسته ای منجر به ارائه فرمول نیمه تجربی جرم و پیشنهاد مدل قطره مایع توسط وایسکر شد.

نخستین واقعیت لازم برای رسیدن به یک فرمول برای جرم، ثابت بودن تقریبی انرژی بستگی به ازای هر نوکلئون برای  50  است، بنابراین انرژی بستگی متوسط برای یک هسته نامتناهی بدون سطح باید دارای مقدار ثابتی مثل  باشد، که همان انرژی بستگی ماده هسته ای است .از آنجایی که تعداد A ذره در هسته وجود دارد سهم حجمی آن  ، در انرژی بستگی به صورت زیر می باشد.                                     .

نوکلئون های سطحی پیوندهای کمتری دارند و اندازه متناهی یک هسته حقیقی منجر به یک جمله  به صورت رابطه زیر در انرژی بستگی می گرددکه متناسب با سطح هسته بوده و انرژی بستگی را کاهش می دهد،

(1-2)                                                                                               .

انرژی کولنی ناشی از نیروی دافعه الکتریکی است که بین هر دو پروتون وجود دارد. برای سادگی فرض شده است، پروتون ها به صورت یکنواخت در سراسر کره ای به شعاع  توزیع شده اند، با بهره گرفتن از معادله انرژی کولنی، ، سهم کولنی در انرژی بستگی به صورت زیر خواهد شد. از آنجایی که این انرژی باعث کاهش انرژی بستگی هسته ای می شود با علامت منفی در رابطه زیر قرار داده می شود،

انرژی تقارنی از اصل طرد ناشی می شود، زیرا این اصل برای آنکه هسته ای بخواهد نوعی از نوکلئون را بیشتر از نوع دیگر داشته باشد انرژی بیشتری مطالبه می کند، که عبارت تقریبی آن به صورت زیر است،

(1-4)                                                                                  .

با ترکیب نمودن روابط فوق انرژی بستگی به ازای هر نوکلئون رابطه ای که وایسکر پیشنهاد کرد به صورت زیر خواهد شد]4[،

(1-5)                                                                                                                  

 مقادیر ثابت در این روابط با برارزش انرژی‌های بستگی مشاهده شده در آزمایش‌ها تعیین می‌شود.

2-2-1- مدل پوسته ای

در مدل پوسته‌ای فرض بر این است كه پوسته‌ها با پروتون‌ها و نوترون‌هایی كه انرژی‌شان بترتیب افزایش می‌یابد پر می‌شود. علی رغم جاذبه شدید بین نوكلئون‌ها كه انرژی بستگی را ایجاد می‌كند حركت نوكلئون‌ها مستقل از یكدیگر بوده و این تناقض ظاهری توسط اثرهای ناشی از طرد پائولی از بین می‌رود زیرا این اصل بشدت امكان برخورد نوكلئون‌ها را محدود می‌سازد.

خواص هسته‌ای متعددی نشان داده است كه برای مقادیر خاصی از نوترون و پروتون رفتاری ناپیوسته از هسته بروز می‌كند كه منجر به پیشنهاد ساختار پوسته‌ای برای هسته‌ها شد. ناپیوستگی‌ها تماماً وقتی یافت می‌شود كه نوترون یا پروتون مقادیر 2، 8، 20، 28، 50، 82، 126 را داشته باشند. این مقادیر را اعداد جادویی گویند. مطالعات تجربی صورت گرفته بر روی هسته‌های با مقادیر N و Z فوق نشان داده است كه این هسته‌ها پایدارترند و انرژی بستگی‌شان نسبت به هسته‌های كاملاً نظیرشان بیشتر می‌باشد.

برخی شواهد تجربی وجود ساختار پوسته‌ای هسته را می‌توان از  فراوانی نسبی ویژه هسته‌های زوج- زوج مختلف در شكل (1-2) كه به صورت تابعی از عدد اتمی A برای 50  رسم شده است بدست آورد.  ویژه هسته‌هایی كه برای آنها N مساوی 50 و 82 و 126 است، سه قله مشخص تشكیل می‌دهند. در حال حاضر این اعداد توسط مدل پوسته‌ای بخوبی توضیح داده شده‌اند.

مدل پوسته‌ای بر اساس مكانیک كوانتومی ساخته و پرداخته شده است و در موارد زیر از جمله بررسی خواص نوكلئیدهایی كه موجب گسیل ذرات آلفا، بتا و فوتون‌های گاما می‌شوند و بیان چگونگی میدان الكتریكی و مغناطیسی اطراف هسته‌ها موفق بوده است ولی این مدل برای توضیح عمل شكاف كمكی نمی‌كند]1،3[.

3  . N. Bohr

4  . F. Von Weizsacker

1  . Collective

2  . Shell Model

1  . Face-Center-Cubic

2  . Wigner

موضوعات: بدون موضوع  لینک ثابت
 [ 10:51:00 ق.ظ ]




فهرست پیوست­ها……………………………………… دوازده

چکیده…………………………………………………. 1

فصل اولمقدمه

مقدمه…………………………………………………. 2

فصل دومتعاریف و مرور منابع

2-1 اثر سد بر کیفیت آب………………………………….. 7

2-2 پیامدهای اکولوژیک سدها………………………………. 9

2-3 تأثیر سد بر تنوع ژنتیکی آبزیان……………………….. 11

2-4 اثرات فیزیکی احداث سدها……………………………… 11

2-5 پارامترهای کیفی آب………………………………….. 13

2-5-1 دما…………………………………………. 13

2-5-2 اکسیژن محلول آب………………………………. 13

2-5-3 اکسیژن مورد نیاز بیوشیمیایی (BOD5)……………… 14

2-5-4 اکسیژن مورد نیاز شیمیایی (COD)…………………. 14

2-5-5 نیترات………………………………………. 15

2-5-6 pH………………………………………….. 15

2-5-7 هدایت الکتریکی……………………………….. 15

2-5-8 فسفات……………………………………….. 16

2-6 استفاده از بی­مهرگان درشت کفزی جهت بررسی وضعیت کیفی آب رودخانه­ها   16

2-7 شاخص ­های تنوع……………………………………….. 19

2-7-1 شاخص تنوع شانون- وینر…………………………. 20

2-7-2 شاخص تنوع سیپمسون…………………………….. 20

2-7-3 شاخص تنوع مارگالف…………………………….. 21

2-7-4 غنای آرایه­ها…………………………………. 21

2-8 شاخص ­های زیستی………………………………………. 21

2-8-1 شاخص زیستی BMWP……………………………… 22

2-9 سابقه و اهمیت تحقیق در جهان………………………….. 24

2-10 سابقه و اهمیت تحقیق در ایران………………………… 26

2-11 معرفی رودخانه­ی زاینده رود…………………………… 27

2-12 معرفی دریاچه­ی سد زاینده رود…………………………. 27

فصل سوم: مواد و روش­ها

3-1 انتخاب ایستگاه­های نمونه برداری……………………….. 29

3-2 روش نمونه برداری……………………………………. 31

3-2-1 نمونه برداری از آب……………………………. 31

3-2-2 نمونه برداری از کفزیان رودخانه…………………. 31

3-3 اندازه گیری فاکتورهای فیزیکی و شیمیایی آب……………… 31

3-4 شناسایی نمونه­های بی­مهرگان کفزی ………………………. 32

3-5 تحلیل داده ­ها ………………………………………. 32

3-5-1 محاسبه­ی شاخص ­های غنا و تنوع درشت بی­مهرگان کفزی……. 32

3-5-2 شاخص ­های زیستی BMWP و ASPT……………………… 32

3-5-3 بررسی روند تغییرات زمانی و مکانی داده ­ها…………. 32

3-5-4 بررسی همبستگی بین داده ­ها………………………. 33

فصل چهارم: نتایج و بحث

4-1 بررسی روند تغییرات مکانی و زمانی پارامترهای کیفی آب رودخانه 34

4-1-1 دمای آب……………………………………… 34

4-1-2 اکسیژن محلول…………………………………. 36

4-1-3 BOD5………………………………………… 36

4-1-4 COD…………………………………………. 38

4-1-5 نیترات………………………………………. 38

4-1-6 pH………………………………………….. 39

4-1-7 هدایت الکتریکی……………………………….. 40

4-1-8 فسفات……………………………………….. 41

4-2 بررسی روند تغییرات مکانی و زمانی شاخص ­های غنا و تنوع درشت بی­مهرگان کفزی 42

4-2-1 تعداد خانواده………………………………… 42

4-2-2 شاخص تنوع شانون………………………………. 44

4-2-3 شاخص تنوع مارگالف…………………………….. 45

4-2-4 شاخص تنوع سیمپسون…………………………….. 4۵

4-3 بررسی روند تغییرات مکانی و زمانی شاخص ­های زیستی…………. 46

4-3-1 شاخص BMWP…………………………………… 46

4-3-2 شاخص ASPT……………………………………. 47

4-4 همبستگی بین داده ­ها………………………………….. 48

مقالات و پایان نامه ارشد

 

4-4-1 همبستگی بین پارامترهای کیفی آب رودخانه………….. 48

4-4-2 همبستگی بین پارامترهای کیفی آب و شاخص ­های محاسبه شده. 48

4-4-3 همبستگی بین شاخص ­های محاسبه شده…………………. 49

فصل پنجمبحث و نتیجه ­گیری

5-1 نتیجه گیری…………………………………………. 52

5-2 پیشنهادات………………………………………….. 54

نه

منابع………………………………………………… 55

 

 

 

فهرست اشکال

عنوان                                                                                                                                                                                                            صفحه

شکل 3-1 موقیت ایستگاه­های نمونه برداری…………………….. 30

شکل 3-2 نمونه ­ای از نمودار باکس- ویسکرپلات………………….. 33

شکل4-1 تغییرات دمای آب رودخانه در ایستگاه­های مورد مطالعه در فصول مختلف     35

شکل4-2 تغییرات میزان اکسیژن محلول آب رودخانه در ایستگاه­های مورد مطالعه در فصول مختلف ………………………………………………… 36

شکل 4-3 تغییرات میزان BOD5 درماه­های مختلف …………………. 37

شکل 4-4 تغییرات میزان BOD5 در ایستگاه­های نمونه برداری ………. 37

شکل 4-5 تغییرات COD در ایستگاه­های نمونه برداری در فصول مختلف سال 38

شکل 4-6 تغییرات نیترات در ایستگاه­های نمونه برداری در فصول مختلف سال   39

شکل 4-7 تغییراتpHدر ایستگاه­های نمونه برداری در فصول مختلف سال . 40

شکل 4-8 تغییرات هدایت الکتریکی در ایستگاه­های نمونه برداری در فصول مختلف سال      41

شکل 4-9 تغییرات فسفات در ایستگاه­های نمونه برداری در فصول مختلف سال    41

شکل 4-10 روند تغییرات تعداد خانواده­های بی­مهرگان درشت کفزی در ایستگاه­های نمونه برداری ……………………………………………….. 43

شکل 4-11 درصد فراوانی راسته­های Ephemeroptera و Trichoptera در ایستگاه­های نمونه برداری    44

شکل 4-12 نسبت نمونه­های حساس بی مهرگان کفزی به شیرونومیده در ایستگاه­های نمونه برداری …………………………………………………….. 44

شکل 4-13 تغییرات شاخص تنوع شانون در ایستگاه­های نمونه برداری … 45

شکل 4-14 تغییرات شاخص تنوع مارگالف در ایستگاه­های نمونه برداری . 45

شکل 4-15 تغییرات شاخص تنوع سیمپسون در ایستگاه­های نمونه برداری . 46

شکل 4-16 تغییرات شاخص زیستی BMWP در ایستگاه­های نمونه برداری .. 47

شکل 4-17 تغییرات شاخص ASPT در ایستگاه­های نمونه برداری ……… 48

فهرست جداول

عنوان                                                                                                                                                                                               صفحه

جدول2-1 طبقه بندی کیفیت آب بر اساس شاخص شانون- وینر ……….. 20

جدول2-2 طبقه بندی کیفی آب بر اساس امتیاز کلی شاخصBMWP ……… 23

جدول 2-3 گروه بندی بر اساس ASPT………………………….. 23

جدول 3-1 موقعیت جغرافیایی ایستگاه­های نمونه برداری …………. 30

جدول 4-1 ضرایب همبستگی پیرسون بین پارامترهای کیفی آب ………. 49

جدول 4-2 ضرایب همبستگی پیرسون بین شاخص ­های محاسبه شده و پارامترهای کیفی آب 50

جدول 4-3 ضرایب همبستگی پیرسون بین شاخص ­های محاسبه شده ………. 51

فهرست پیوست­ها

عنوان                                                                                                                                                                                               صفحه

پیوست۱

جدول 1-1 استاندارد خروجی فاضلاب­ها ………………………… 60

جدول 1-2 استاندارد کمیسیون اروپایی برای آب­های مورد استفاده در تولید آب­های آشامیدنی …………………………………………………….. 62

پیوست2

جدول 2-1 آمار ماهیانه ی دبی ایستگاه های هیدرومتری سازمان آب منطقه ای در زمان نمونه برداری ………………………………………………. 64

جدول 2-2 آمار دبی ایستگاه های هیدرومتری سازمان آب منطقه ای در زمان نمونه برداری 64

شکل 2-1 نمودار بارندگی ماهیانه در ایستگاه هواشناسی کوهرنگ در استان چهارمحال و بختیاری ……………………………………………… 65

شکل 2-2 نمودار بارندگی ماهیانه در ایستگاه هواشناسی سامان در استان چهارمحال و بختیاری ……………………………………………… 65

پیوست3

جدول 3-1 امتیازهای هر خانواده در سیستم BMWP ……………… 66

جدول 3-2 معرفی گونه­ های شناسایی شده در ایستگاه­های نمونه برداری . 69

جدول3-3 تراکم و فراوانی نمونه­های شناسایی شده در تاریخ 22 تیرماه 1392  70

جدول 3-4 تراکم و فراوانی نمونه­های شناسایی شده در تاریخ 2 شهریور ماه 1392   71

جدول 3-5 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 20 مهر ماه ۱۳۹۲     72

جدول 3-6 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 5 آذر ماه 1392 73

جدول 3-7 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 20 دی ماه ۱۳۹۲ 74

جدول 3-8 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 3 اسفند 1392    75

جدول 3-9 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 23 فروردین 1393 76

جدول 3-10 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 10 خرداد 1393 77

شکل 3-1 نمودار میانگین میزان BOD اندازه گیری شده در ایستگاه­های مورد مطالعه در فصول مختلف ……………………………………………….. 78

شکل 3-2 نمودار میانگین میزان شاخص تنوع شانون محاسبه شده در ایستگاه­های مورد مطالعه در فصول مختلف ………………………………………… 78

شکل 3-3 نمودارمیانگین میزان شاخص تنوع سیمپسون محا

دوازده

سبه شده در ایستگاه­های مورد مطالعه در فصول مختلف   78

چکیده

رودخانه­ها به عنوان یکی از مهم­ترین منابع آبی، نسبت به فعالت­های انسانی بسیار آسیب­پذیر هستند. ایجاد مخازن و سدها یکی از قدیمی­ترین اشکال دخالت انسان در اکوسیستم­های آبی است. سدها با وجود مزایای زیاد (تولید انرژی برق­آبی، کنترل سیلاب و تنظیم سطح آب) پتانسیل تغییر جمعیت موجودات آبزی را نیز دارند. احداث سدها تغییرات مهمی را در رژیم جریان، حمل و انتقال ذرات معلق، مورفولوژی رودخانه، درجه حرارت آب و شرایط شیمیایی به خصوص در پایین دست رودخانه­ها ایجاد می­ کنند. درشت بی­مهرگان کفزی تحت تأثیر تغییرات ایجاد شده در زیستگاه قرار می­گیرند. اثر سدها بر جوامع بی­مهرگان کفزی به خاطر نقشی که در عملکرد اکوسیستم رودخانه­ای ایفا می­ کنند، بسیار مهم است. رودخانه زاینده رود یكی ازبزرگترین رودخانه­های ایران و مهم­ترین رودخانه جاری درفلات مركزی ایران است که رژیم جریان آن تحت تاثیر سد زاینده رود قرار دارد. به منظور ارزیابی اثر اکولوژیکی ناشی از احداث سد زاینده رود بر جوامع زیستی و کیفیت آب رودخانه زاینده رود، تعداد 6 ایستگاه (ایستگاه­های خرسونک و اورگان قبل از سد، ایستگاه چادگان درفاصله نزدیک زیردست سد و ایستگاه­های حجت آباد، مارکده و هوره در پایین­دست سد) انتخاب و وضعیت کیفی آب و کفزیان رودخانه به روش کمی از تیر ماه 1392 تا خرداد 1393 مورد بررسی قرار گرفت. نمونه برداری از آب و کفزیان رودخانه در هر ایستگاه با 3 تکرار و در تناوب­های زمانی 45 روزه ( هر فصل دو بار) انجام شد. پارامترهای دما، اکسیژن محلول، نیترات، فسفات، BOD5، COD، EC و pH نمونه­های آب به روش استاندارد اندازه گیری شد. شاخص ­های زیستی شامل غنای تاکسونی، BMWP و ASPT و همچنین شاخص ­های تنوع شانون، سیمپسون و مارگالف برای جوامع کفزی محاسبه شد. نتایج حاصل در مجموع نشان داد که خصوصیات فیزیکی وشیمیایی آب رودخانه (به جز دما) بین مناطق بالادست و پایین­دست تحت تاثیر ساختار سد نبوده و بیشتر متاثر از تغییرات فصلی است. همچنین شاخص ­های تنوع شامل غناء، شاخص ­های تنوع شانون، مارگالف و سیمپسون کاهش معنی داری را به خصوص در ایستگاه زیردست سد و کاهش قابل توجهی را در ایستگاه های پایین­دست سد نشان دادند که می ­تواند تحت تاثیر سازه سد باشد. تراکم بسیاری از خانواده­های کفزیان در ایستگاه سد کاهش قابل توجهی را نشان داد. در ایستگاه­های پایین­دست سد نیز علاوه بر کاهش تراکم، نوع موجودات نیز تغییر کرده و با نمونه­های سازگار با شرایط جدید جایگزین شدند. همچنین شاخص ­های زیستی BMWP و ASPT به ترتیب وضعیت کیفی آب را در ایستگاه زیر دست سد مشابه آب­های آلوده و مشکوک به آلودگی تا آلودگی متوسط احتمالی نشان داد. این افت کیفیت ناشی از آلودگی­های آلی نبوده و بیشتر در اثر تغییر در تراکم و تنوع خانواده­های کفزیان حاصل شده است.

کلمات کلیدی: سد، زاینده­رود، شاخص ­های زیستی، درشت بی­مهرگان کفزی، کیفیت آب.

موضوعات: بدون موضوع  لینک ثابت
 [ 10:51:00 ق.ظ ]




عنوان                                                                                                                                 صفحه

فصل اول.. 15

کلیات تحقیق.. 15

1-1- مقدمه:.. 15

1-2- گیاه هلپه:.. 16

1-2-1- ترکیبات گیاه هلپه:. 17

1-2-2- کاربرد گیاه:. 17

1-2-3- خاصیت آنتی اکسیدانی عصاره:. 18

1-3- دانه های روغنی:.. 18

1-4- روغن کانولا:.. 18

1-4-1- گیاه شناسی دانه روغنی کانولا:. 18

1-4-2- تاریخچه کشت کانولا:. 19

1-4-3- ترکیب روغن کانولا:. 20

1-4-4- مکانیسم آنتی اکسیدانی روغن کانولا:. 20

1-5- فرایند اکسیداسیون:.. 21

1-6- روش های جلوگیری از اکسیداسیون:.. 21

1-7- مکانیسم آنتیاکسیدانها:.. 22

1-8- انواع آنتیاکسیدانها:.. 22

1-9- اکسیداسیون چربی ها و روغن ها:.. 22

1-9-1-انواع اکسیداسیون:. 23

1-9-2- آنتی اکسیدان ها :. 24

1-9-3-  مکانیسم آنتی اکسیدانی:. 24

1-9-3-آنتی اکسیدان های طبیعی:. 25

1-9-4آنتی اکسیدان های سنتیک :. 25

1-10- ترکیبات فنلی در گیاهان.. 25

1-11- روش های ارزیابی اکسیداسیون روغن.. 26

1-11-1 عدد پراکسید. 26

1-11-2 میزان ترکیبات قطبی. 27

1-11-3 عدد کربونیل. 27

1-11-4 عدد یدی. 27

1-11-5 عدد اسیدی. 27

1-11-6 شاخص پایداری اکسایشی. 28

1-11-7 عدد کنژوکه. 28

فصل دوم.. 29

مروری بر تحقیقات انجام شده.. 29

فصل سوم.. 48

مواد و روشها.. 48

.. 48

3-2- لوازم آزمایشگاهی.. 48

3-3- تهیه و آماده کردن پودر گیاه هلپه.. 49

3-4- استخراج عصاره (عصاره گیری بوسیله شیکر(ماسراسیون)).. 49

3-5- آماده سازی نمونه های روغن.. 50

3-6- اندازه گیری ترکیبات فنولی.. 50

3-6-1- رسم منحنی استاندارد و معادله خط رابطه جذب و غلظت اسید گالیک (منحنی کالیبراسیون). 50

3-6-2- اندازه گیری ترکیبات فنولی روغن کانولای بدون آنتیاکسیدان سنتزی. 51

3-6-3- اندازه گیری ترکیبات فنولیک عصاره گیاه هلپه. 52

3-7- اندازه گیری ترکیبات توکوفرولی.. 52

3-7-1- ترسیم منحنی کالیبراسیون. 52

3-7-2- اندازه گیری ترکیبات توکوفرولی نمونه روغن بدون آنتیاکسیدان. 53

3-7-3- اندازه گیری ترکیبات توکوفرولی عصاره گیاه هلپه. 54

3-8- بررسی فعالیت آنتی اکسیدانی عصاره با آزمون حذف رادیکال های آزاد DPPH    54

3-9- آزمون پایداری روغن در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد   55

3-9-2- اندیس اسیدی. 56

3-9-3- شاخص پایداری اکسایشی (OSI). 56

3-9-4- اندازگیری عدد پراکسید (PV). 56

3-9-5- اندازگیری عدد کربونیل. 58

3-9-7- اندازگیری مقدار کل ترکیبات قطبی. 59

3-9-7-1- آماده سازی سیلیکاژل. 59

3-9-7-2- پر کردن ستون کروماتو گرافی. 59

3-9-7-3- تهیه و آماده سازی نمونه وحلال جداسازی. 59

3-9-8- اندازه گیری عدد دیان مزدوج (کنژوگه). 60

3-9-9- اندازگیری عدد یدی. 60

3-10- تجزیه و تحلیل آماری.. 60

فصل چهارم.. 61

تجزیه و تحلیل داده ها.. 61

4-1- محتوای ترکیبات فنولیک.. 61

4-2- مقدار ترکیبات توکوفرولی.. 62

 

مقالات و پایان نامه ارشد

 

4-3- اندازه گیری فعالیت آنتی اکسیدانی، طبق آزمون درصد مهار رادیکال آزاد DPPH    63

4-4- بررسی خاصیت آنتیاکسیدانی عصارههای گیاه هلپه با غلظت ppm 200 در روغن کانولا   64

4-4-1- تغییرات عدد پراکسید در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد  64

4-4-2- تغییرات عدد اسیدی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد  65

4-4-3- تغییرات عدد یدی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد  67

4-4-4- تغییرات عدد کنژوگه در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد  68

4-4-5- تغییرات عدد کربونیل در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد  69

4-4-6- تغییرات شاخص پایداری اکسایشی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد  70

4-4-7- تغییرات مقدار فنول در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد  71

4-4-8- تغییرات مقادیر کل ترکیبات قطبی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد. 72

فصل پنجم.. 74

بحث و نتیجه گیری و پیشنهادات.. 74

5-1- شاخص کیفی روغن اولیه.. 74

5-2- اندازه گیری محتوای ترکیبات فنولیک.. 75

5-3- ترکیبات توکوفرولی.. 76

5-4- بررسی فعالیت آنتی اکسیدانی با آزمون درصد مهار رادیکال آزاد  DPPH.. 77

5-5- آزمونهای پایداری روغن کانولا در طی 60 روز انبارمانی.. 78

5-5-1- عدد پراکسید. 78

5-5-2- تغییرات عدد اسیدی. 79

5-5-3- تغییرات عدد یدی. 80

5-5-4- تغییرات عدد کنژوگه. 81

5-5-5- تغییرات عدد کربونیل. 81

5-5-6- شاخص پایداری اکسایشی. 82

5-5-7- تغییرات ترکیبات فنولی. 83

5-5-8- مقادیر کل ترکیبات قطبی. 83

نتیجه گیری کلی:.. 84

پیشنهادات:.. 87

منابع.. 88

فهرست جداول

عنوان                                                                                                                                 صفحه

جدول 4-1: میانگین مقدار فنول کل عصارهها با روش های مختلف عصاره گیری.. 60

جدول 4-2: میانگین مقدار توکوفرول عصاره با روش های مختلف عصاره گیری.. 61

جدول 4-3: میانگین درصد مهار رادیکال آزاد DPPH.. 62

جدول4-4: میانگین تغییرات عدد پراکسید در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 64

جدول4-5: میانگین تغییرات عدد اسیدی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 65

جدول4-6: میانگین تغییرات عدد یدی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری   66

جدول4-7: میانگین تغییرات عدد کنژوگه در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 67

جدول4-8: میانگین تغییرات عدد کربونیل در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 68

جدول4-9: میانگین تغییرات شاخص پایداری اکسایشی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 69

جدول4-10: میانگین تغییرات مقدار فنول در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 70

جدول4-11: میانگین تغییرات ترکیبات قطبی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 72

جدول 5-1: ساختار اسید چرب روغن كانولای فاقد آنتی اكسیدان (صالحی و همکاران، 1393)   73

جدول 5-2: خصوصیات شیمیایی روغن كانولای فاقد آنتی اكسیدان (صالحی و همکاران، 1393)   74

فهرست اشکال

عنوان                                                                                                                                 صفحه

شکل 3- 1- دستگاه شیکر.. 47

شکل3-2- منحنی استاندارد غلظت اسید گالیک در برابر میزان جذب خوانده شده درطول موج ٧۶٥ نانومتر.. 49

شکل 3-3- منحنی كالیبراسیون میزان آلفا- توكوفرول در برابر میزان جذب خوانده شده در طول موج 520 نانومتر.. 51

شکل 3-4- دستگاه اسپکتروفتومتر.. 53

شکل3-5- منحنی كالیبراسیون غلظت آهن ш در برابر جذب خوانده شده درطول موج 500 نانومتر   55

شکل 4-1: مقایسه میانگین مقدار ترکیبات فنولیک.. 60

شکل 4-2: مقایسه میانگین مقدار ترکیبات توکوفرولی.. 61

شکل 4-3: مقایسه میانگین درصد مهار رادیکال آزاد DPPH در غلظت ppm 200. 62

شکل 4-4: مقایسه میانگین تغییرات عدد پراکسید عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 63

شکل 4-5: مقایسه میانگین تغییرات عدد اسیدی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 64

شکل 4-6: مقایسه میانگین تغییرات عدد یدی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 65

شکل 4-7: مقایسه میانگین تغییرات عدد کنژوگه عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 67

شکل 4-8: مقایسه میانگین تغییرات عدد کربونیل عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 68

شکل 4-9: مقایسه میانگین شاخص پایداری اکسایشی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 69

شکل 4-10: مقایسه میانگین تغییرات مقدار فنول عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 70

شکل 4-11: مقایسه میانگین تغییرات ترکیبات قطبی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 71

چکیده

اکسیداسیون روغن­ها علاوه بر تغییر ویژگیهای روغن­ها، بر سلامت مصرف کنندگان تاثیر سوئی می­گذارد. یکی از مهمترین روشها، جهت جلوگیری از اکسیداسیون، استفاده از آنتی­اکسیدانها است. به دلیل اثرات مضر آنتی­اکسیدانهای سنتزی، در سال­های اخیر توجه زیادی به آنتی­اکسیدانهای طبیعی استخراج شده از گیاهان شده است. گیاهان منبع غنی از تركیبات فنلی هستند كه مهم ترین آنتی اكسیدان های طبیعی به شمار می آیند نیاز به آنتی اكسیدان های طبیعی در صنایع غذایی، آرایشی و دارویی باعث تحقیقات علمی گسترده ای در دهه های اخیر شده است. در این پژوهش اثر روش استخراج با سه نوع حلال (آب، اتانول و اتانول – آب 50 درصد) بر خصوصیت آنتی اکسیدانی عصاره گیاه هلپه ارزیابی شد تا مناسبترین روش استخراج برای استفاده بهینه از این محصول جانبی، تعیین شود. در این روش استخراج با حلال، گیاه خورد شده با سه حلال فوق به نسبت (1به 10) مخلوط و در مدت زمان 24 ساعت در دمای اتاق و بر روی شیکر با سرعت rpm 250 انجام شد. اندازه گیری فنل تام عصاره ها با بهره گرفتن از روش فولین سیوکالتیو و فعالیت آنتی اکسیدانی عصاره ها با بهره گرفتن از روش حذف رادیکال های آزاد DPPH اندازه گیری گردید. در ادامه سه نوع عصاره بدست آمده را با غلظت ppm 200 جهت پایدارسازی روغن کانولا در طی انبارمانی به آن اضافه شد و با آنتی اکسیدان BHA و نمونه شاهد در دمای 25 درجه سانتیگراد در فواصل زمانی 15 روزه و به مدت 60 روز با 8 شاخص پایداری اکسیداتیو از جمله OSI، عدد پراکسید، عدد کربنیل، عدد کونژوگه، ترکیبات فنولی، ترکیبات قطبی، اندیس اسیدی و اندیس یدی مقایسه گردید. نتایج بدست آمده نشان داد که بیشترین میزان فنول (ppm 03/232/61) بدست آمده مربوط به عصاره­ی (اتانول- آب) می­باشد که بر مبنای اسید گالیک بیان می­ شود همچنین بیشترین میزان توکوفرول (ppm 87/258/95)، مربوط به عصاره­ی (اتانول- آب) می­باشد ولی مقدار آن از لحاظ آماری با سایر نمونه ها اختلاف معنی دار نداشت. همچنین بیشترین درصد مهار در آزمون حذف رادیکال­های آزاد (95/1±49/51) مربوط به عصاره هیدروالکلی (اتانول- آب) ماسراسیون در غلظت ppm 200 میباشد. همچنین در همه آزمون­های پایدارسازی روغن کانولا بجز آزمون اندیس یدی و ترکیبات فنولی، نمونه حاوی عصاره اتانول – آب عملکرد بهتری نسبت به سایر نمونه ها داشتند.

واژگان کلیدی: گیاه هلپه، ترکیبات فنول، توکوفرول، DPPH، پایداری اکسایشی، روغن کانولا.

 فصل اول

 

 کلیات تحقیق

 

1-1- مقدمه:

به دلیل وجود مقدار قابل توجهی از پیوندهای دوگانه در بسیاری از روغن ها، این مواد درمعرض اكسیداسیون و فساد قرار دارند. برخی از تركیبات به وجود آمده در اثر اكسیداسیون برای سلامت انسان زیان آور می باشد . ترکیباتی مانند رادیکال های آزاد که این ترکیبات منجر به واکنش های نامطلوب شیمیایی و احتمالاً بیولوژیکی می شوند.  با توسعه علم بیوشیمی نقش موثر رادیکال های آزاد در خیلی از بیماری ها مشخص شده است و نقش رادیکال های آزاد و اکسیژن فعال در بیماری هایی مثل تصلب شرایین، سرطان و پیری زودرسمورد توجه است. یكی از راه های مهم مقابله با اكسیداسیون روغنها استفاده از آنتی اكسیدانها می باشد. آنتی اکسیدان ها ترکیباتی هستند که با جذب رادیکال آزاد و در نتیجه ممانعت از اکسیداسیون، ازفساد، تغییر رنگ و یا تند شدن چربی ها جلوگیری می کنند.به خصوص آنتی اکسیدان هایی که بنیان  حلقوی فنولی حاوی گروه OH را دارا می باشند، نقش مهمی در جلوگیری از اکسیداسیون چربی دارند. اما طبق پاره ای از بررسیهای انجام شده، استفاده از آنتی اكسیدانهای سنتزی ممكن است تحت شرایطی با خطرات سرطان زایی، جهش زایی و یا اثرات سوء دیگری برای انسان همراه باشد. استفاده از روغن­ها و چربی­های خوراکی به منظور پخت و آماده ­سازی مواد غذایی به سرعت رو به افزایش استو مصرف زیاد روغن­ها و چربی­ها مستلزم حساسیت و کنترل بیشتر خواص کیفی آن­ها طی فرایندهای مربوطه و به تبع آن حفظ سلامت تغذیه­ای جامعه است (Kritchesky et al, 2010).

پایداری کم روغن های مایع در برابر عوامل فساد، همیشه به عنوان یک مشکل کیفی مطرح بوده و اکسایش عامل اصلی فساد چربی ها و روغن ها محسوب می شود. از طرف دیگر پایداری روغن ها به ترکیب اسیدهای چرب آنها به ویژه درصد اسید لینولنیک و اسید لینولئیک نیز بستگی دارد و تفاوت ساختاری اسیدهای چرب که از تفاوت در طول زنجیره، درجه غیر اشباعی و محل قرارگیری پیوندهای دوگانه وشکل فضایی ایزومرهای حاصل از آنها ناشی میگردد.ترکیبات حاصل از اکسیداسیون سبب تغییراتی در رنگ، بو، بافت و ویتامین های موجود ودر نهایت تغییر در کیفیت و کاهش ارزش تغذیه ای و نابودی ویتامین های A، D و E میگردند. رادیکال های آزاد حاصل از اکسیداسیون چربی ها، به بسیاری از مولکول های زیستی مانند لیپید ها، پروتئین ها حمله نموده و باعث آسیب آنها می شوند. شرایط اکسیداسیون از جمله دما، زمان و فشار اکسیژن نیز به تولید مواد فرار و ویژگی های حسی لیپیدهای اکسید شده تأثیر میگذارند.همانند واکنش های شیمیایی دیگر، سرعت  اکسیداسیون چربی ها با افزایش دما تسریع می شود. زیرا دما باعث افزایش سرعت تولید رادیکال های آزاد شده ونیز باعث تجزیه هیدروپراکسیدها به رادیکال های فوق العاده فعال هیدروکسی می شود و در ضمن باعث کاهش زمان لازم برای طی شدن مرحله اکسیداسیون کند می گردد. در دماهای پایین، اکسیداسیون اسیدهای چرب بیشتر مربوط به واکنش های تولید هیدروپراکسیدها است که در این حالت ترکیبات غیر اشباع کاهش نمی یابند. اما در انجام اکسیداسیون در شرایط دمایی بالا، میزان زیادی از پیوند های دوگانه اشباع می شوند به همین دلیل پایداری روغن در دماهای بالا در برابر اکسیداسیون اهمیت زیادی دارد (محمدی وهمکاران،1386).

1-2- گیاه هلپه:

گیاه هلپه با نام علمی L. Teucrium polium گیاهی است علفی جزء گیاهان خوشبو و معطر می باشد گیاهی است پایا با قسمتهای چوبی شده در پایین و بسیار منشعب به ارتفاع  cm40 برگهای کشیده و دندانه دار و تمام قسمتهای آن پوشیده از کرکهای بلند و سفید می باشد و بدین جهت نقره ای رنگ است. این گیاه معمولاً در نواحی بایر، سواحل سنگلاخی و ماسه زارهای نواحی مختلف اروپا، منطقه مدیترانه، شمال آفریقا و جنوب غربی آسیا منجمله ایران می روید. این گیاه در ایران در نواحی مختلف شمال، مغرب، جنوب و مرکز ایران، منطقه البرز و کوهستانهای نیمه خشک پراکندگی وسیعی دارد (تجدد و همکاران، 1392) و در نواحی کوهستانی البرز تا ارتفاعات m 1500 دیده می شود. برگ های این گیاه باریک، دراز و پوشیده از کرک های پنبه ای در هر دو سطح پهنک است. گل هایی به تفاوت رنگ های سفید، سفید مایل به زرد، یا زرد و حتی ارغوانی دارد. این حالت متغیر بودن نه تنها در رنگ گل بلکه در وضع ساقه گیاه که به صورت پرپشت و پرشاخه و یا به حالت خوابیده درمی آید نیز دیده می شود. زمان گل دادن آن به تناسب شرایط محیط زندگی بین خرداد و مرداد است. قسمت مورد استفاده ی گیاه سرشاخه های گلدار می باشد (زرگری 1390).

1-2-1- ترکیبات گیاه هلپه:

گیاه هلپه که در طب سنتی ایران کلپوره نیز نامیده می شود، 300 گونه از آن شناسایی شده است (دیف رخشی و همکاران 1389). اعضای این جنس غنی از مونوترپن ها، سسکوئیترپن ها، آلکالوئیدها، ساپونین، ترکیبات پلی فنولی، اسیدهاتی چرب، استرول و روغن های اسانسی (الماسری و همکاران، 2014)، گلیکوزیدهای فنیل پروپانوئیدی، گلیکوزیدهای ایریدوئید و فلاونوئیدها (دی مارنیو و همکاران، 2012) تانن، آلفا و بتاپنین، لوکوآنتوسیانین و اسانس های فرار هستند که بیش ترین مواد این اسانس ژرمارکرین D-B بتاکاریوفیلن، هرمون و کاریوفیلین اکساید است (تجدد و همکاران، 1392). این جنس غنی از دی ترپن ها با اسکلت دی ترپن های نوکلرودان است (الماسری و همکاران، 2014). ترکیبات منحصر به فرد عصاره هلپه شامل آپیژنین، روتین، دی متوکسی آپی ژنین ، ورباسکوزید، پلپوموزید می باشند (گولاس و همکاران، 2012).

1-2-2- کاربرد گیاه:

بیش از 220 دی ترپن از این جنس شناسایی شده که بسیاری از این متابولیت های زیست محیطی به عنوان antifeedant حشرات کاربرد دارند. همچنین در درمان تب، رماتیسم بیماری های انگلی، درمان عفونت های قارچی و آبسه به کار می روند (الماسری و همکاران، 2014). روغن فراری که از سرشاخه های گلدار گیاه به دست می آید دارای ماده مؤثر آنتاگونیستی کلسیم است که باعث بروز خاصیت ضد اسپاسم می شود (تجدد و همکاران، 1392). همچنین بررسی عسل ناحیه شمال غرب ایران نشان داد که عسل کلپوره در افزایش استحکام زخم و تسریع در التیام زخم مؤثر می باشد (انصاری و همکاران، 1388). این گیاه همچنین در درمان دردهای گوارشی، سرماخوردگی، درمان دردهای دوران بارداری، اختلالات کبدی، سقط جنین، چربی خون و دیابت کاربرد دارد (دیف رخش و همکاران، 1389).

-2-3- خاصیت آنتی اکسیدانی عصاره:

مزایای درمانی عصاره T. polium معمولاً به توانایی شان در سرکوب و توقف فرایندهای اکسایشی نسبت داده می شود. به عنوان مثال در برخی مطالعات گزارش شد که عصاره الکلی T. polium می تواند هیدروژن پراکسید ناشی از پراکسیداسیون لیپیدی در سلول های قرمز خون را به صورت وابسته به غلظت سرکوب کند (خان احمدی و رضا زاده،2010).

1-3- دانه های روغنی:

دانه های روغنی مهم ترین محصولات حاوی روغن­ های نباتی هستند که در کشاورزی جایگاه خاص داشته و اراضی وسیعی در سر تا سر جهان به کشت این محصولات باارزش اختصاص دارد. ارزش و اهمیت

موضوعات: بدون موضوع  لینک ثابت
 [ 10:50:00 ق.ظ ]




 فهرست مطالب
عنوان                                                                                 صفحه
فصل 1- مقدمه 9
1-1- مقدمه 9
1-2- هدف و انگیزه 10
1-3- تعریف مسئله 11
1-4- ساختار مطالب پایان نامه 12
1-5- جمع­بندی و نتیجه ­گیری 12
فصل 2- مروری بر ادبیات تحقیق و مبانی نظری 16
2-1- سرویسهای وب 16
2-1-1- Simple Object Access Protocol (SOAP) 18
2-1-2- WSDL (Web Service Description Language) 20
2-1-3- UDDI (Universal Description, Discovery and Integration) 22
2-1-4- RESTful (Representational State Transfer) 23
2-1-5- مقایسه SOAP و RESTfull 24
2-1-6- کشف سرویس مبتنی بر DNS 26
2-2- جمع­بندی و نتیجه ­گیری 29
فصل 3- پیشینه پژوهشی 33
3-1- کلاسه­بندی سرویس­ها مبتنی بر داده ­کاوی 33
3-1-1- تشکیل بردار خصوصیت­ها 34
3-1-2- اعمال روش­های کلاسه­بندی داده ­کاوی 34
3-2- استفاده از تکنیک­های یادگیری ماشین 35
3-2-1- نمونه­هایی از کارهای پژوهشی پیشین 36
3-3- جمع­بندی و نتیجه ­گیری 38
فصل 4- ارائه روش پشنهادی 41
4-1- کشف سرویس­ها 41
4-2- کلاسه­بندی سرویس­ها 43
4-2-1-  Feature Mining 44
4-2-2-  Tokenization 44
4-2-3- Stemming 44
4-2-4-  Stop List 45
4-2-5- معرفی WordNet Ontology 45
4-2-6- معرفی eXtended WordNet Domains 45
4-2-7- روش کلاسه­بندی ارائه شده 46
4-3- جمع­بندی و نتیجه ­گیری 47
فصل 5- پیاده­سازی 50
5-1- مرور کلی پیاده­سازی از دیدگاه مورد استفاده 50
5-1-1- مورد استفاده ثبت دامنه مورد نظر کاربر 51
5-1-2- مورد استفاده مشاهده لیست دامنه­های مورد نظر برنامه ­های کاربردی 52
5-1-3- مورد استفاده مشاهده لیست سرویس­های هر دامنه 53

مقالات و پایان نامه ارشد

 

5-1-4- مورد استفاده ثبت دامنه مورد نظر نرم­افزار گوشی 54
5-1-5- دریافت لیست سرویسهای مرتبط با یک دامنه توسط نرم­افزارهای کاربردی 55
5-2- ساختار بسته­ها 55
5-2-1- ساختار کلاس­های بسته Activity 57
5-2-2- ساختار کلاس­های بسته­های Broadcast Receiver و Service 59
5-2-3- ساختار کلاس­های بسته Business Component 61
5-2-4- ساختار کلاس­های بسته Classification 62
5-2-5- ساختار کلاس­های بسته Content Provider 65
5-2-6- ساختار کلاس­های بسته Data Source 67
5-2-7- ساختار کلاس­های بسته Discovery 70
5-2-8- ساختار کلاس­های بسته Entity 71
5-2-9- ساختار کلاس­های بسته ServiceDirectory 73
5-3- جمع­بندی و نتیجه ­گیری 74
فصل 6- ارزیابی روش پیشنهادی 78
6-1- مجموعه­داده 78
6-2- اجرای روش پیشنهادی 79
6-2-1- بررسی دقت روش پیشنهادی 80
6-2-2- مشخصات محیط اجرا 80
6-2-3- بررسی زمان اجرای روش پیشنهادی 80
6-2-4- میزان حافظه مصرفی روش پیشنهادی 81
6-3- اجرای روش مبتنی بر SVM 82
6-3-1- فاز آموزش 83
6-3-2- فاز تست 84
6-3-3- بررسی دقت روش مبتنی بر SVM 84
6-3-4- بررسی زمان اجرای روش مبتنی بر SVM 85
6-3-1- میزان حافظه مصرفی روش مبتنی بر SVM 85
6-4- ارزیابی و مقایسه روش پیشنهادی 86
6-4-1- مقایسه دقت 86
6-4-2- مشاهدات متناظر 87
6-4-3- مقایسه زمان اجرا 88
6-4-4- مقایسه حافظه مصرفی 89
6-4-5- تحلیل نتایج 90
6-5- جمع­بندی و نتیجه ­گیری 92
فصل 7- بحث و نتیجه‌گیری 96
7-1- کشف سرویس­ها 96
7-2- کلاسه­بندی سرویس­ها 97
7-3- جمع­بندی و نتیجه ­گیری 98
فصل 8- پیشنهادها و فرصت‌های پژوهشی آینده 102
8-1- جمع­بندی و نتیجه ­گیری 104
فهرست شکل‌ها
عنوان                                                                                  صفحه
شکل ‏2‑1- معماری سرویس­های وب 18
شکل ‏2‑2- تفاوت نسخه­های WSDL نسخه 1.1 و نسخه 2.0 21
شکل ‏4‑1- فرایند کلاسه­بندی سرویس­های وب 43
شکل ‏5‑1-نمودار موردهای استفاده 51
شکل ‏5‑2- نمای دامنه­های مورد نظر کاربر 52
شکل ‏5‑3-نمایی اصلی برنامه 54
شکل ‏5‑4- نمودار بسته­ها 56
شکل ‏5‑5- نمودار کلاس­های بسته Activity 58
شکل ‏5‑6- نمودار کلاس بسته­های Broadcast Receiver و Service 60
شکل ‏5‑7- نمودار کلاس بسته Business Component و وابستگی­ها 62
شکل ‏5‑8- نمودار کلاس بسته Classification 64
شکل ‏5‑9- نمودار کلاس بسته Content Provider 66
شکل ‏5‑10-نمودار کلاس بسته Data Source 68
شکل ‏5‑11- کلاس Service 69
شکل ‏5‑12- نمودار کلاس بسته Discovery و بسته­های وابسته 71
شکل ‏5‑13- نمودار کلاس بسته Entity 73
شکل ‏5‑14- نمودار کلاس بسته Directory 74
شکل ‏6‑1- بردار نمونه یک سرویس در روش متنی بر SVM 83
شکل ‏6‑2- نمودار مقایسه دقت روش­ها 87فهرست جدول‌ها
عنوان                                                                                 صفحه
جدول ‏3‑1- جدول مقایسه دقت کلاسه­بندی برای انواع بردارها و روش­ها 35
جدول ‏6‑1- بررسی دقت روش پیشنهادی 80
جدول ‏6‑2- مشخصات گوشی که به عنوان محیط اجرا استفاده شده 80
جدول ‏6‑3- زمانی اجرای روش پیشنهادی 81
جدول ‏6‑4- حافظه مصرفی روش پیشنهادی 82
جدول ‏6‑5- بررسی دقت روش مبتنی بر SVM 84
جدول ‏6‑6- زمانی اجرای روش مبتنی بر SVM 85
جدول ‏6‑7- حافظه مصرفی روش مبتنی بر SVM 85
جدول ‏6‑8- مقایسه دقت روش­­ها 86
جدول ‏6‑9- بازه­های اطمینان مختلف به ازای سطوح اطمینان مختلف برای زمان اجرا 89
جدول ‏6‑10- بازه­های اطمینان مختلف به ازای سطوح اطمینان مختلف برای حافظه مصرفی 90

فصل 1- مقدمه

در این فصل به ارائه مقدمه­ای در مورد موضوع پروژه می پردازیم. در ادامه به بیان انگیزه و هدف تحقیق پرداخته می­ شود، و سپس مسئله­ای که با آن مواجه هستیم توضیح داده می­ شود. در قسمت آخر نیز ساختار مطالب پایان نامه توضیح داده می­ شود.

-1- مقدمه

امروزه در دسترس بودن اینترنت در اکثر مکان­ها یک تجربه روزمره است. از این رو برای کاربران سیار این انتظار ایجاد شده است، که دستگاهی که از آن استفاده می­نمایند، در همه مکان­ها و زمان­ها قادر به پردازش باشد. پیشرفت­های اخیری

موضوعات: بدون موضوع  لینک ثابت
 [ 10:50:00 ق.ظ ]
 
مداحی های محرم