فهرست مطالب
فصل 1: مقدمه  1
1-1- مقدمه. 2
فصل 2: مروری بر پیشینه تحقیق   6
2-1- مقدمه. 7
2-2- ریفرمینگ هیدروکربن‌ها 7
2-2-1- ریفرمینگ با بخار آب… 7
2-2-2- ریفرمینگ اکسایش جزئی… 9
2-2-3- ریفرمینگ خودگرمازا 11
2-3- مکانیزم واکنش برای ریفرمینگ متان.. 12
2-3-1- مدلهای سینتیكی برای ریفرمنیگ متان.. 14
2-3-2- مدلهای سینتیكی برای احتراق متان.. 18
2-3-3- مدلهای سینتیكی برای واکنش شیفت آب- گاز. 20
2-4- راكتورهای مورد استفاده برای فرایند ریفرمینگ….. 21
2-5- مدل‌سازی‌های صورت گرفته برای راکتورهای مونولیتی… 22
2-6- نتیجه گیری… 33
فصل 3: ارائه‌ مدل‌سازی   34
3-1- مقدمه. 35
3-2- مشخصات راكتور مونولیتی مدل‌سازی شده. 35
3-3- فرضیات و معادلات استفاده شده در مدل‌سازی… 37
3-3-1- مدل‌سازی مکانیزم واکنش….. 43
3-3-2- روابط سینتیكی برای ریفرمینگ خودگرمازای متان بر روی كاتالیست روتنیم  44
3-4- نتیجه‌گیری… 47
فصل 4: نتایج و بحث    49
4-1- مقدمه. 50
4-2- بررسی صحت مدل‌سازی… 50
4-1-1- مقایسه با نتایج آزمایشگاهی… 50
4-3- اثر میزان اکسیژن ورودی… 57
4-4- اثر میزان بخارآب ورودی… 62
4-5- بررسی اثر دمای گاز ورودی… 69
4-6- نتیجه‌گیری… 75
فصل 5: جمع‌بندی و پیشنهادات   76
5-1- مقدمه. 77
5-1-1- پیشنهادها 78
مراجع   79
پیوست                                                                                                90
 
 
فهرست اشکال
شکل (‏2‑1)-  نمایی از یک راكتور مونولیتی… 21
شکل (‏2‑2): کانتورهای دما بر روی سطح متقارن در x=0 در

مقالات و پایان نامه ارشد

 (a):  W/m.K76/2= k، W/m.K6/27= k، W/m.K2/55= k، W/m.K4/202= k، بر حسب درجه سانتیگراد. 31

شکل (‏2‑3): بازده ریفرمینگ بر مبنای هبدروژن و گاز سنتز در اثر تغییر توان حرارتی ورودی   32
شکل (‏3‑1)- راكتور استفاده شده توسط Rabe 36
شکل (‏3‑2)- سطح مش‌بندی شده هندسه مورد استفاده در مدل‌سازی… 37
شکل( ‏4‑1)- پروفایل غلظت گونه‌های شیمیایی حاصل از مدل‌سازی در شرایط آزمایشگاهی (1)- توان حرارتی kW 09/1. 53
شکل (‏4‑2)- پروفایل غلظت اجزاء در 5/2 میلیمتر ابتدایی کانال (الف): بخارآب (ب): متان، اکسیژن، دی‌اکسیدکربن و هیدروژن (ج) مونواکسید کربن (توان حرارتی ورودی kW 09/1) 54
شکل (‏4‑3)- پروفایل دمای حاصل از مدل‌سازی در شرایط آزمایشگاهی (1)- توان حرارتی kW 09/1 55
شکل (‏4‑4)- پروفایل دمای حاصل از مدل‌سازی در شرایط آزمایشگاهی (2)- توان حرارتی kW 97/0 55
شکل (‏4‑5)- پروفایل غلظت هیدروژن در اثر تغییر میزان اکسیژن ورودی  (9/2 =H2O /CH4 ، توان حرارتی kW 09/1) 58
شکل (‏4‑6) – پروفایل غلظت مونو‌اکسید‌کربن در اثر تغییر میزان اکسیژن ورودی   (9/2 = H2O /CH4  ، توان حرارتی kW 09/1) 59
شکل (‏4‑7) – پروفایل غلظت دی‌اکسید‌کربن  در اثر تغییر میزان اکسیژن ورودی   (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 59
شکل (‏4‑8)- پروفایل غلظت متان در اثر تغییر میزان اکسیژن ورودی  (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 60
شکل (‏4‑9)- اثر تغییر میزان اکسیژن ورودی بر روی میزان تبدیل متان  (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 60
شکل (‏4‑10)- پروفایل دما در اثر تغییر میزان اکسیژن ورودی  (9/2 =H2O /CH4  ، توان حرارتی kW 09/1) 61
شکل (‏4‑11)- پروفایل غلظت هیدروژن در اثر تغییر میزان اکسیژن ورودی  (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 63
شکل (‏4‑12)-  پروفایل غلظت مونو‌اکسید‌کربن  در اثر تغییر میزان اکسیژن ورودی   (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 64
شکل (‏4‑13)- پروفایل غلظت دی‌اکسید‌کربن  در اثر تغییر میزان اکسیژن ورودی   (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 64
شکل (‏4‑14)- پروفایل غلظت متان در اثر تغییر میزان اکسیژن ورودی  (8/3 = H2O /CH4 ، توان حرارتی kW 09/1) 65
شکل (‏4‑15)- اثر تغییر میزان اکسیژن ورودی بر روی میزان تبدیل متان  (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 66
شکل (‏4‑16)- پروفایل دما در اثر تغییر میزان اکسیژن ورودی  (8/3 =H2O /CH4 ، توان حرارتی kW 09/1) 66
شکل (‏4‑17)- تأثیر افزایش بخارآب بر روی ترکیب درصد متان خروجی از راکتور. 68
شکل (‏4‑18)- اثر دمای گاز ورودی بر روی ترکیب درصد متان خروجی از راکتور. 70
شکل (‏4‑19)- اثر دمای گاز ورودی بر روی ترکیب درصد هیدروژن خروجی از راکتور. 71
شکل (‏4‑20)- اثر دمای گاز ورودی بر روی ترکیب درصد مونواکسید کربن خروجی از راکتور 71
شکل (‏4‑21)- اثر دمای گاز ورودی بر روی پروفایل دمای درون راکتور. 72
شکل (‏4‑22)- اثر دمای °C 450 در ورودی راکتور بر روی کانتور دمای درون آن.. 73
شکل (‏4‑23)- اثر دمای °C 500 در ورودی راکتور بر روی کانتور دمای درون آن.. 74
شکل (‏4‑24)-  اثر دمای °C 550 در ورودی راکتور بر روی کانتور دمای درون آن.. 74
شکل (‏4‑25)- اثر دمای °C 600 در ورودی راکتور بر روی کانتور دمای درون آن.. 75
فهرست جداول
جدول (‏3‑1)- پارامترهای سینتیکی برای کاتالیست 5% (انرژی اکتیواسیون بر حسب kJ/kmol) 45
جدول (‏3‑2)- ثوابت جذب مواد برای فرایند ریفرمینگ خودگرمازا  46
جدول (‏3‑3)- ثوابت تعادلی برای فرایند ریفرمینگ خودگرمازا  47
جدول (‏4‑1)-  مشخصات خوراک ورودی به راکتور در کار آزمایشگاهی… 51
جدول (‏4‑2)- مقایسه نتایج حاصل از مدل‌سازی با کار آزمایشگاهی در شرایط توان حرارتی kW 09/1 52
جدول (‏4‑3)- مقایسه نتایج حاصل از مدل‌سازی با کار آزمایشگاهی در شرایط توان حرارتی kW 97/0 52
جدول (‏4‑4)- تأثیر افزایش بخارآب بر روی yield هیدروژن (%) 67
جدول (‏4‑5)- تأثیر افزایش بخارآب بر روی yield مونواکسیدکربن (%) 67
جدول (‏4‑6)- تأثیر افزایش بخارآب بر روی yield دیاکسیدکربن (%) 68
 1-

  • مقدمه

 
 

1-1- مقدمه

پیل‌های سوختی مستقیماً انرژی شیمیایی یک سوخت را به انرژی الکتریکی تبدیل می‌کند. پیل‌های سوختی، به علت دانسیته توان بالا، محصولات جانبی بی‌زیان برای محیط زیست و شارژ مجدد سریع، به عنوان یکی از تکنولوژی‌های نوین برای تولید انرژی در آینده و جایگزین مناسبی برای تولید انرژی از روش‌های مرسوم محسوب می‌شوند. مهم‌ترین مزیت پیل‌های سوختی، در مقایسه با موتورهای رفت و برگشتی و استرلینگ، امکان دستیابی به بازده بالاتر در تبدیل سوخت به الکتریسیته است که به ‌ویژه در مناطق آلوده مناسب است.
برای پیل‌‌های سوختی، هیدروژن سوخت ارجح است. مزیت استفاده از هیدروژن در پیل سوختی به واکنش‌پذیری زیاد آن برای واکنش الکتروشیمیایی آند و غیر آلاینده بودن آن برمی‌گردد. با این وجود، هیدروژن به صورت یک محصول گازی در طبیعت موجود نمی‌باشد. به همین جهت باید از آب، سوخت‌های فسیلی و سایر مواد با دانسیته هیدروژن بالا استفاده شود که می‌تواند فرایند دشوار و پرهزینه‌ای باشد. همچنین ذخیره کردن هیدروژن، بخصوص برای استفاده

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...