کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو



 



فهرست مطالب:

1) فصل اول: کلیات تحقیق …………………………………………………………………………2

1-1) مقدمه……………………………………………………………………………………….. 2

1-2) بیان مسئله و ضرورت تحقیق……………………………………………………………… 4

1-3) سؤال تحقیق………………………………………………………………………………… 5

1-4) اهداف تحقیق……………………………………………………………………………….. 5

1-5) ساختار پایان نامه…………………………………………………………………………… 6

2) فصل دوم: پیشینه تحقیقاتی و منطقه مورد مطالعه…………………………………………8

2-1) مقدمه    …………………………………………………………………………………….. 8

2-1-1) پهنه­ بندی عرصه ­های طبیعی از نظر ریسک آتش­سوزی…………………………… 8

2-1-2) تحقیقات انجام شده در زمینه­ شبیه­سازی رفتار و گسترش آتش­سوزی………11

2-1-2-1) استفاده از سلول­های خودکار به منظور شبیه­سازی آتش­سوزی…………. 12

2-1-2-2) استفاده از مدل FARSITE به منظور شبیه­سازی آتش­سوزی………….. 14

2-2) منطقه مورد مطالعه………………………………………………………………………. 15

2-2-1) پوشش گیاهی……………………………………………………………………… 16

3) فصل سوم: چهارچوب نظری تحقیق…………………………………………………………20

3-1) مقدمه    ………………………………………………………………………………….. 20

3-2) آتش­سوزی………………………………………………………………………………… 20

3-2-1) انواع آتش­سوزی……………………………………………………………………. 21

3-2-1-1) آتش­سوزی زمینی (داخل خاک)………………………………………….. 22

3-2-1-2) آتش­سوزی سطحی…………………………………………………………. 22

3-2-1-3) آتش­سوزی تاجی……………………………………………………………. 22

3-2-1-4)آتش­سوزی تنه­ای……………………………………………………………. 23

3-3) مدلسازی رفتار آتش………………………………………………………………………. 22

3-4) سیستم­های شبیه­سازی رفتار آتش……………………………………………………… 23

3-4-1) مدل­های پیش بینی آتش سوزی و طبقه ­بندی آنها  ……………………………. 23

3-4-1-1) طبقه ­بندی بر مبنای مدلسازی جریان گرمایی……………………………. 25

3-4-1-1-1) مدل­های فیزیکی (تئوریکی)………………………………………… 25

3-4-1-1-2) مدل­های نیمه­تجربی (نیمه فیزیکی)……………………………….. 25

3-4-1-1-3) مدل‌های آماری (تجربی)……………………………………………. 26

3-4-1-1-4) مدل‌های احتمالی……………………………………………………. 27

3-4-1-2) طبقه ­بندی مدل­های آتش­سوزی براساس متغیرهای مورد مطالعه………. 27

3-4-1-3) طبقه ­بندی بر اساس سیستم فیزیکی مدل شده………………………….. 27

3-4-1-3-1) مدل‌های پیش ­بینی آتش­سوزی­های سطحی……………………….. 28

3-4-1-3-2) مدل‌های پیش ­بینی آتش­سوزی‌های تاجی…………………………. 28

3-4-1-3-3) مدل‌های پیش ­بینی آتش­سوزی زمینی……………………………… 29

3-4-1-3-4) مدل‌های پیش ­بینی آتش­سوزی‌های نقطه­ای………………………. 29

3-4-2) تکنیک­های شبیه­سازی آتش……………………………………………………… 28

3-4-2-1) سلول­های خودکار…………………………………………………………… 30

3-4-2-2)    انتشار موج بیضوی………………………………………………………… 31

3-4-2-2-1)مدل FARSITE……………………………………………………… 31

3-4-3) تکنیک انتشار FARSITE………………………………………………………… 31

3-4-4) مدل رفتار آتش در FARSITE………………………………………………….. 35

3-4-5) پارامترهای تأثیرگذار………………………………………………………………. 35

3-4-5-1)توپوگرافی…………………………………………………………………….. 37

3-4-5-2)پوشش گیاهی………………………………………………………………… 38

3-4-5-2-1)میزان تاج پوشش……………………………………………………… 38

3-4-5-2-2)ارتفاع توده جنگل…………………………………………………….. 38

3-4-5-2-3)مدل ماده سوختنی…………………………………………………… 39

3-4-5-3)   شرایط آب و هوایی……………………………………………………….. 41

3-4-5-3-1) دما و رطوبت نسبی………………………………………………….. 41

 

پایان نامه و مقاله

 

3-4-5-3-2) باد…………………………………………………………………….. 41

3-5) جمع­بندی…………………………………………………………………………………. 43

4) فصل چهارم: مواد و روش­ها………………………………………………………………….45

4-1) مقدمه:…………………………………………………………………………………….. 45

4-2) داده ­ها……………………………………………………………………………………… 46

4-2-1) توپوگرافی…………………………………………………………………………… 46

4-2-2) آب و هوا……………………………………………………………………………. 48

4-2-3) تاج پوشش منطقه…………………………………………………………………. 48

4-2-4) پراکنش گونه­ های درختی…………………………………………………………. 50

4-2-5) موانع گسترش آتش­سوزی………………………………………………………… 51

4-2-6) نرم افزار­های مورد استفاده………………………………………………………… 52

4-3) روش تحقیق………………………………………………………………………………. 52

4-3-1) انتخاب مدل ماده سوختنی……………………………………………………….. 52

4-3-2) مدلسازی جریان باد……………………………………………………………….. 54

4-3-3) ارتفاع توده جنگل………………………………………………………………….. 55

4-3-4) شبیه­سازی با بهره گرفتن از مدل FARSITE……………………………………….

4-4) سناریوهای مختلف شبیه­سازی گسترش آتش­سوزی…………………………….. 57

4-5) روش ارزیابی دقت………………………………………………………………………… 57

4-6) پهنه­ بندی از نظر وسعت گسترش آتش ………………………………………………… 58

5) فصل پنجم: نتایج و بحث  ……………………………………………………………………… 60

5-1) مقدمه……………………………………………………………………………………… 60

5-2) اجرای اولیه مدل در شرایط و سناریوهای مختلف …………………………………….. 60

5-2-1) شبیه­سازی در شرایط یکسان محیطی…………………………………………… 61

5-2-2) شبیه­سازی در شرایط محیطی مختلف و ماده سوختنی یکسان……………….. 63

5-2-3) شبیه­سازی در شرایط کاملاً مختلف محیطی ……………………………………. 65

5-3) شبیه­سازی آتش­سوزی رخ داده در منطقه مورد مطالعه در آذر ماه 1389 …………. 67

5-4) پهنه­ بندی از نظر خطر گسترش آتش (وسعت آتش­سوزی) …………………………..71

6) فصل ششم: جمع­بندی و پیشنهادات …………………………………………………….81

6-1) جمع­بندی…………………………………………………………………………………. 81

6-2) پیشنهادات ……………………………………………………………………………….. 82

چکیده:

یکی از معضلات پیش­روی مدیریت مراتع و جنگل­ها در نواحی شمالی کشور، آتش­سوزی­هایی می­باشد که خسارت­های زیست محیطی و مالی سنگینی را تحمیل می­ کند. مدیریت ریسک آتش­سوزی در ارتباط با اقدامات پیشگیرانه می ­تواند عرصه طبیعی را از گزند بسیاری از زیان­های ناشی از آتش­سوزی محافظت کند. مساحتی از عرصه ­های طبیعی که در نتیجه شروع آتش­سوزی ممکن است دچار حریق شود موضوعی است که کمتر به آن توجه شده است. بنابراین تحقیق حاضر تلاش دارد روش جدیدی را در زمینه پهنه­ بندی عرصه ­های طبیعی از نظر خطر گسترش و وسعت آتش­سوزی ارائه کند. به منظور شبیه­سازی نرخ گسترش و مساحت دچار آتش­سوزی در این تحقیق از مدل FARSITE که یک مدل برداری بررسی رفتار و گسترش آتش به شمار می­رود، استفاده شد. مدل ماده سوختنی به عنوان یکی از ارکان اصلی در شبیه­سازی با توجه به شرایط پوشش گیاهی منطقه تعیین گردید. تغییرات محلی سرعت و جهت باد که در نتیجه شرایط توپوگرافی منطقه حادث می­ شود، مدلسازی و در FARSITE مورد استفاده قرار گرفت. همچنین به منظور ارزیابی مدل FARSITE در شبیه­سازی گسترش آتش­سوزی در منطقه مورد مطالعه، از یک مورد آتش­سوزی که در منطقه به وقوع پیوست، استفاده گردید که دقت بدست آمده با بهره گرفتن از شاخص کاپا برابر 42 درصد می­باشد. مقایسه و تحلیل آتش­سوزی شبیه­ سازی شده با آتش­سوزی واقعی، نشان می­دهد مدل FARSITE قابلیت شبیه­سازی آتش­سوزی­های بالقوه را در عرصه ­های طبیعی منطقه دارا می­ باشد. بنابراین فرایند پهنه­ بندی دربرگیرنده شبیه­سازی­های متعددی از گسترش آتش­سوزی­های سطحی بالقوه می­باشد. مقایسه نتیجه نهایی پهنه­ بندی با سوابق آتش­سوزی­های موجود حکایت از سازگاری اینگونه نقشه­ ها با واقعیت موجود دارد.

فصل اول: کلیات تحقیق

1-1- مقدمه

منابع طبیعی به عنوان ثروت هر جامعه و امانتی برای آیندگان به شمار می‌رود. کسانی که از این ثروت و موهبت الهی استفاده می‌کنند موظفند که از آن به طور صحیح و اصولی بهره برداری نموده و آباد و سرسبز به نسل بعد از خود تحویل نمایند. زیرا امروزه ثابت شده است که منابع طبیعی بستر حیات کلیه موجودات زنده بوده و آبادانی و سرسبزی آن نشانه پیشرفت جوامع و زمینه ساز توسعه پایدار می‌باشد.

جنگل‌ها و مراتع نیز به عنوان بخشی از منابع طبیعی و همچنین مطرح بودنشان به عنوان مهمترین منابع تجدید شونده، اگر مورد بی­مهری انسان­ها قرار نگیرند و انسان­ها زمینه تضعیف و یا نابودی آنها را فراهم نکنند، هیچگاه به اتمام نمی‌رسند. در مورد تأثیرات مستقیم و غیر مستقیم عرصه ­های جنگلی و مرتعی می‌توان به تولید و حفظ خاک، تولید فرآورده ­های صنعتی و دارویی، تغذیه آبهای زیرزمینی، تولید اکسیژن، جلوگیری از سیل، ارزش­های تفرجگاهی، حفظ گونه­ های جانوری و حیات وحش و … اشاره نمود که انسان و سایر موجودات از آن بهره‌مند می‌شوند.

با این حال عوامل مختلفی در زمینه تخریب جنگل نقش دارند که از جمله آنها می‌توان به قطع بی­رویه درختان، تبدیل جنگل به زمین زراعی، چرای مفرط دام، آفات و بیماریها و آتش­سوزی اشاره نمود. در این میان آتش­سوزی از یک حساسیت خاصی نسبت به سایر عوامل تخریب کننده برخوردار می‌باشد  چرا که حتی یک آتش­سوزی محدود هم می‌تواند خسارات قابل ملاحظه­ای را موجب گردد.

سالانه سطح زیادی از جنگل‌های دنیا دچار حریق می‌شوند که این حریق نه تنها باعث نابودی پوشش گیاهی در منطقه حریق می‌شوند بلکه باعث اختلال در فرایندهای هیدرولوژیکی، افزایش فرسایش خاک و رواناب تولیدی این مناطق می‌شود.

بنابراین تعیین نواحی با ریسک بالای آتش­سوزی و همچنین شناسایی و پیش ­بینی رفتار و حرکات آتش­سوزی‌های بالقوه و بالفعل به منظور جلوگیری از آتش­سوزی‌های مهیب احتمالی و گسترش آن در نواحی مستعد، کاملاٌ لازم و ضروری به نظر می­رسد، که این کار با بهره گرفتن از روش­های تجربی و میدانی، کاری دشوار و هزینه­بر می‌باشد. به همین دلیل استفاده از روش­ها و تکنولوژی­های نوین می‌تواند جایگزین مناسبی برای روش­های سنتی بشمار رود. از جمله اینها می توان به سامانه­های اطلاعات جغرافیایی و تکنولوژی­های سنجش از دور اشاره کرد.

در همین راستا توسعه سامانه­های اطلاعات جغرافیایی کمک بسیار بزرگی به پیش ­بینی و مدل­سازی رفتار و گسترش آتش­سوزی‌های عرصه ­های طبیعی نموده است. زیرا همانگونه که پیداست، آتش­سوزی در جنگل­ها علاوه بر تأثیرپذیری از تراکم پوشش گیاهی، با عوامل دیگری نظیر رطوبت، ارتفاع، تیپ پوشش، شیب دامنه، نزدیکی به شهرها، روستاها و جاده­ها مرتبط است که همه این عوامل را می­توان به سهولت در سامانه اطلاعات جغرافیایی مدلسازی نمود. همچنین در صورت وجود اطلاعات جامع و کافی از عوامل تأثیرگذار، می­توان با بهره گرفتن از روش­های تحلیل مکانی در محیط GIS نسبت به تعیین نواحی پرخطر و طبقه بندی این مناطق از منظر میزان ریسک­پذیری در برابر گسترش آتش اقدام نمود.

تغییرات زمانی و مکانی گسترش و رفتار آتش می‌تواند با بهره گرفتن از مدل‌های فیزیکی، نیمه فیزیکی و تجربی توسعه یافته در طی سال­های اخیر، پیش ­بینی شود. از جمله این مدل‌ها، می­توان به مدل شبیه­ساز سطح آتش (FARSITE[1]) اشاره نمود که در واقع یک مدل نیمه فیزیکی در زمینه مدلسازی رفتار و حرکت آتش می‌باشد.

FARSITE یک مدل GIS مبنای شبیه­ساز دو بعدی گسترش آتش است که توسط سازمان جنگل­ها و کشاورزی ایالات متحده آمریکا و اساساً برای برنامه ریزی و مدیریت آتش­سوزی­های عرصه ­های طبیعی طراحی و توسعه داده شد(Finney, 2004). این مدل قادر است حرکت و رفتار آتش­ را در عرصه محیطی موردنظر محاسبه و گسترش جبهه آتش را در طول زمان و با در نظر گرفتن تغییرات شرایط آب و هوایی در زمان و مکان تعیین نماید. این مدل از اطلاعات مکانی مربوط به توپوگرافی، مواد اشتعال پذیر، به همراه وضعیت آب و هوایی منطقه استفاده می‌کند.

از چند دیدگاه می­توان از این مدل بهره جست (گزمه، 1391):

1- برای آموزش آتش­نشانان قبل از آتش­سوزی و استفاده از شبیه­سازی کامپیوتری برای درک بهتر رفتار آتش. متأسفانه بارها شاهد این بوده ایم که آتش­نشانان و جنگل­بانان در دام حریق گرفتار شده ­اند، تنها به این دلیل که اطلاعی از جهت و نحوه گسترش آتش­سوزی نداشتند. با داشتن اطلاعات کافی در این زمینه، احتیاط های لازم و موارد ایمنی به خوبی به امداد رسانان آموزش داده خواهد شد.

2- برای اختصاص نیروها و امکانات در زمان و مکان مناسب. مدیران و برنامه­ ریزان جنگل­ها و مراتع، با در دست داشتن مدلی مناسب و کارا، قطعاً در هنگام آتش­سوزی بهترین عملکرد و رفتار را در مورد آتش­سوزی­های مهیب خواهند داشت.

3- پهنه­ بندی منطقه از نظر وسعت حریق. در دسترس بودن اینگونه نقشه­ها،  به مدیران امر در زمینه شناسایی نواحی پرخطر از نظر احتمال و وسعت آتش­سوزی یاری رسانده و در انجام عملیات اطفاء حریق کمک شایانی می­رساند.

2-1- بیان مسئله و ضرورت تحقیق

جنگل­ها یکی از فرم­های حیاتی است که تحت تاثیر عوامل محیطی قادر به ادامه حیات به طور مستقیم می‌باشد. با این وجود، عوامل مخرب طبیعی و مصنوعی می‌توانند بر روند طبیعی آن تاثیر مثبت یا منفی گذاشته و باعث ایجاد تغییراتی در این اکوسیستم پویا و خود تنظیم گردند که یکی از این عوامل، پدیده آتش­سوزی می‌باشد (بخشنده و مهاجر، 1390).

آتش سوزی جنگل­ها و مراتع نه تنها از دیدگاه زیست محیطی بلکه از نظر اقتصادی، اجتماعی و امنیتی نیز یکی از اصلی‌ترین نگرانی­ها در بسیاری از نقاط جهان( Silvia, et al., 2010)  و نیز به عنوان یکی از مخربترین عوامل ایجاد تغییرات نامطلوب در اکوسیستم­های جنگلی در کوتاه مدت به شمار می­رود(Coban, 2010) . در این ارتباط نحوه جلوگیری از آسیب­های آتش­سوزی جنگل و مراتع بسیار مهم می‌باشد که در این راستا می­توان از طریق ارزیابی ریسک آتش­سوزی، پیش ­بینی رفتار و گسترش آتش­سوزی جنگل بر اساس مدل‌های شبیه­ساز، برای مدیریت فرونشانی آتش اقدام نمود.

افزایش مصرف سوخت­های فسیلی در دهه­های اخیر، پیامدهایی را به دنبال داشته که از جمله آن می­توان به افزایش گازهای گلخانه­ای در جو اشاره نمود، که این عامل تغییراتی را در اقیم کره­ی زمین در پی داشته است. یکی از مهم­ترین اثرات این تغییر اقلیم، تاثیر آن بر رخداد خشکسالی و شدت و مدت آن می‌باشد. یکی از تبعات پدیده­ خشکسالی، تأثیر گذاری آن بر فرایند آتش­سوزی مراتع و جنگل­ها می‌باشد، به طوری که هرگاه میزان رطوبت به علت کمبود بارش و افزایش دما، کاهش یابد، زمینه برای بروز آتش­سوزی در این بسترها مهیّا خواهد شد. بنابراین ضرورت دارد جهت کاهش خسارات ناشی از این پدیده، مطالعات فراگیری جهت پیش ­بینی مناطق پرخطر و اقدامات پیشگیرانه و ارائه راهکارهایی جهت کاهش خسارت­های ناشی از آن انجام گیرد.

براین اساس مدیریت آتش­سوزی می‌تواند به عنوان راهکاری برای جلوگیری از وارد شدن صدمات خارج از توان این اکوسیستم­ها و نتایج وخیم اقتصادی و اجتماعی آن در نظر گرفته شود. در این راستا سازمان­های مربوطه برای کاهش اثرات منفی آتش­سوزی، در ابتدا نیاز به شناخت مناطق آسیب پذیر داشته که بتوانند با این اطلاعات و مدیریت زمان، سرعت عمل به همراه برنامه ریزی دقیق و همچنین امکانات، تجهیزات و آموزشهای لازم و ضروری در این خصوص همت گماشته و بتوانند در کنترل و کاهش خسارات ناشی از آتش­سوزی نقش مؤثری ایفا کنند (جلیل پور و فرهادی، 1390).

ایران به دلیل قرار گرفتن در کمربند خشک کره­ی زمین و پرفشار جنب حاره­یی،­­­ شاهد نوسانات زیادی در میزان بارش مناطق مختلف و وقوع خشکسالی­­­­­­­­های ضعیف تا شدید در دوره­ های مختلف می‌باشد که این پدیده اقلیمی یکی از مهم­ترین عوامل مستعد برای ایجاد آتش­سوزی می‌باشد. این مساله در مناطق شمالی کشور نیز به دلیل وجود جنگل­های طبیعی و مصنوعی، می‌تواند بسیار نگران کننده باشد و بستری مناسب جهت ایجاد حریق و آتش­سوزی را در این مناطق

موضوعات: بدون موضوع  لینک ثابت
[یکشنبه 1399-09-30] [ 10:48:00 ب.ظ ]




فهرست مطالب

عنوان                  صفحه

چکیده

فصل اول : مقدمه

1-1- كمومتریكس… 2

1-2- روش‌های كمومتریكس… 3

1-3- دسته‌بندی داده‌ها 5

1-3-1- داده‌های مرتبه صفر. 5

1-3-2- داده‌های مرتبه اول. 5

1-3-3- داده‌های مرتبه دوم 6

1-4- آنالیز چند جزئی. 7

1-5- روش‌های كالیبراسیون. 7

1-5-1- كالیبراسیون تك متغیره 7

1-5-2-كالیبراسیون چند متغیره 8

1-6- رگرسیون خطی چند تایی. 9

1-7- مولفه‌های اصلی(PC) یا فاكتورهای اصلی. 9

1-7-1- آنالیز مولفه‌های اصلی(PCA) 10

1-7-2- رگرسیون مولفه‌های اصلی (PCR) 11

1-7-3- تكنیك‌های رگرسیون. 11

1-8- تقسیم بندی روش‌های كالیبراسیون چند متغیره 12

1-9- روش های مشتقی در اسپکتروفتومتری. 12

1-10- مقدمه ای بر روش های مشتقی. 14

1-10-1- روش ها و مزایا 14

1-10-2- تکنیک های نوری و الکترونی در مشتق گیری. 15

1-10-3- تکنیک های ریاضی در مشتق. 16

عنوان                                           صفحه

1-10-4- حذف پس زمینه 17

1-10-5- اثرات پهنای طیف.. 18

1-11- مشکلات ماتریسی در مشتق. 19

1-12- مرحله كالیبراسیون (آموزش) و پیشگویی (تست) 20

1-12-1- طراحی آزمایش… 21

1-12-2- اثر نویز. 23

1-13- پیش پردازش داده‌ها 23

1-13-1- تمركز بر میانگین. 24

1-13-2- هم مقیاس كردن. 24

1-14- تصحیح سیگنال عمودی. 25

1-15- انتخاب فاكتورهای بهینه در كالیبراسیون. 26

1-15-1- الگوریتم اعتبار سازی دو طرفه 26

1-16- پارامترهای آماری. 27

1-17- تجزیه‌های اسپكتروفتومتری. 28

1-18- حسگر شیمیایی. 29

1-19- انواع حسگرهای شیمیایی. 30

1-19-1- حسگرهای گرمایی. 31

1-19-2- حسگرهای جرمی. 31

1-19-3- حسگرهای الکتروشیمیایی. 32

1-19-3-1- حسگرهای پتانسیومتری. 32

1-19-3-2- حسگرهای آمپرومتری. 33

1-19-3-3- حسگرهای رسانایی سنجی. 33

1-20- حسگرهای  نوری. 34

عنوان                                                                  صفحه

1-21- قواعد حسگری در حسگرهای نوری بر پایه جذب.. 35

1-21-1 جذب.. 36

پایان نامه

 

1-22- شیمی پاسخ حسگر. 37

1-23- مکانیسم پاسخ در حسگرهای نوری. 40

1-23-1- حسگرهایی بر پایه تبادل یون. 40

1-23-2- حسگری بر اساس استخراج همزمان. 41

1-23-3- حسگری بر اساس شناساگرهای رنگزا و فلورسانس کننده 42

1-23-4- حسگری بر اساس رنگینه های حساس به پتانسیل. 43

1-24- روش های تثبیت.. 43

1-25-  مواد مورد استفاده به عنوان بستر تثبیت.. 47

فصل دوم  : تاریخچه

2-1- مروری بر تاریخچه روش‌های كالیبراسیون چند متغیره 51

2-2- مروری برتاریخچه حسگرهای نوری برای اندازه گیری کاتیونها 52

فصل سوم :‌ بخش تجربی

3-1- مقدمه 56

3-1-1- اسپكتروفتومتری. 56

3-2- تكنیک اسپكتروفتومتری. 57

3-2-1- مواد و دستگاه‌های مورد نیاز 57

3-2-1-1- تهیه محلول‌ها و استانداردها 58

3-2-1-2- نرم‌افزارهای مورد استفاده 59

عنوان                                                               صفحه

فصل چهارم : بحث و نتایج

4-1- بهینه سازی پارامترهای مؤثر در اندازه گیری همزمان سرب و جیوه 61

4-1-1- بررسی اثر غلظت واکنشگر بر روی فرایند تثبیت.. 61

4-1-2- بررسی اثر زمان تثبیت.. 62

4-1-3- اثر pH در اندازه گیری همزمان سرب و جیوه 63

4-1-4- زمان پاسخ حسگر. 65

4-2- منحنی کالیبراسیون. 66

4-3- حد تشخیص روش.. 68

4-4- بررسی تکرار پذیری در ساخت حسگرها 68

4-5-کالیبراسیون چند متغیره 69

4-5-1- انتخاب تعداد فاکتورهای بهینه 71

4-5-2- اندازه گیری همزمان سرب و جیوه توسط روش های مختلف کمومتریکس… 71

4-5-2-1- اندازه گیری همزمان سرب و جیوه توسط روش PLS. 71

4-5-2-2- اندازه گیری همزمان سرب و جیوه توسط روش پیش پردازش D-PLS. 73

4-5-2-3- اندازه گیری همزمان سرب و جیوه توسط روش پیش پردازشOSC-PLS. 75

4-5-2-4- اندازه گیری همزمان سرب و جیوه توسط روش پیش پردازشD-OSC-PLS. 77

4-6- اندازه گیری همزمان سرب و جیوه  با بهره گرفتن از حسگر در نمونه های حقیقی. 79

نتیجه گیری. 81

فهرست اشكال

عنوان                                                                                                              صفحه

شکل 1-1- نمایش ماتریس  X به Scores و  Loading توسط روش آنالیز مولفه های اصلی. 11

شکل 1-2- نمایش جذب ها و مشتق هایی از یک طیف گوسین. 13

شکل 1-3- نمایی از یک طیف دارای جذب زمینه و مشتق آن. 17

شکل 1-4- نمایشی از تفاوت در پهنای گسترده پیک ها 18

شکل 1-5- اثرات حذف پراکندگی. 19

شکل 1-6- نمایی از مشکلات ماتریسی بر روی طیف ها 20

شکل 1-7- طراحی فاکتوری بر اساس سه فاکتور 22

شکل 1-8- پیش پردازش داده ها. 25

شکل 1-9- آرایش کلی حسگر شیمیایی یا بیوشیمیایی. 30

شکل 1-10- مکانیسم تبادل یون برای تشخیص و اندازه گیری یک آنالیت کاتیونی در حسگر نوری. 41

شکل 1-11- مکانیسم استخراج همزمان آنالیت آنیونی همراه با پروتون به درون لایه حسگر. 42

شکل 1-12- اثر تشکیل جفت یون در چربی دوستی شناساگر. 46

شکل 3-1- شمایی از شکل ساختاری گالوسیانین. 58

شکل 3-2- طیف های مربوط به کمپلکس های سرب و جیوه با گالوسیانین. 59

شکل 4-1- اثر غلظت لیگاند بر میزان تثبیت بر روی فیلم های تری استات سلولز. 62

شکل 4-2- اثر زمان تثبیت واکنشگر بر پاسخ حسگر. 63

شکل 4-3- اثر pH در اندازه گیری سرب.. 64

شکل 4-4- اثر pH در اندازه گیری جیوه 64

شکل 4-5- اثر زمان تماس حسگر با محلول سرب.. 65

شکل 4-6- اثر زمان تماس حسگر با محلول جیوه 66

573 nm   67

565 nm.. 67

عنوان                                                                                    صفحه

شکل 4-9- نمودار  PRESSبرای فلزات سرب و جیوه با روش PLS. 72

شکل 4-10- نمودار  Scores برای فلزات سرب و جیوه با روش PLS. 72

شکل 4-11- نمودار PRESS برای فلزات سرب و جیوه با روش پیش پردازش D-PLS. 74

شکل 4-12- نمودار Scoresبرای فلزات سرب و جیوه با روش پیش پردازشD-PLS. 74

شکل 4-13- نمودار PRESS برای فلزات سرب و جیوه با روش پیش پردازش OSC-PLS. 76

شکل 4-14- نمودار  Scoresبرای فلزات سرب و جیوه با روش پیش پردازشOSC-PLS. 76

شکل 4-15- نمودار PRESS برای فلزات سرب و جیوه با روش های پیش پردازشD-OSC-PLS. 78

شکل 4-16- نمودار Scoresبرای فلزات سرب و جیوه با روش های پیش پردازشD-OSC-PLS. 78

فهرست جداول

عنوان                                                                                                            صفحه

جدول 4-1- نتایج تجربی بدست آمده در تکرارپذیری در ساخت حسگرها. 68

جدول 4-2- غلظت های مختلف فلزات سرب و جیوه در مخلوط های دو جزئی استفاده شده در کالیبراسیون   70

جدول 4-3- غلظت های مختلف فلزات سرب و جیوه در مخلوط های دو جزئی استفاده شده در مرحله پیشگوئی    70

جدول 4-4- نتایج به دست آمده در نمونه های سنتزی مربوط به سرب و جیوه با PLS.. 73

جدول 4-5- نتایج به دست آمده در نمونه های سنتزی مربوط به سرب و جیوه با PLS-D… 75

جدول 4-6- نتایج به دست آمده در نمونه های سنتزی مربوط به سرب و جیوه با PLS-OSC… 77

جدول 4-7- نتایج به دست آمده در نمونه های سنتزی مربوط به سرب و جیوه با PLS-D-OSC… 79

جدول 4-8- نتایج به دست آمده در نمونه های حقیقی مربوط به اندازه گیری همزمان سرب و جیوه با روشPLS-D-OSC… 80

چکیده

سنسور نوری پیشنهاد شده برای تعیین مقادیری از سرب و جیوه به وسیله تثبیت گالوسیانین بر غشای تری استات سلولز. پیوندهای شیمیایی از یون های سرب و جیوه در محلول با گالوسیانین تثبیت شده بر روی سطح پیوند برقرار می کند که می توان آنها را توسط روش اسپکتروفوتومتری اندازه گیری کرد.از جمله عوامل مهم در این پروژه بهینه سازی pH محلول ،غلظت گالوسیانین ،زمان تثبیت و زمان پاسخ می باشد. این عوامل برای بهبود و بالا بردن حساسیت این روش مورد مطالعه قرار گرفت و مشخص شد. بهترین راندمان این متد با1pH= ،غلظت گالوسیانین 006/0 مول بر لیتر ،زمان تثبیت 20 دقیقه و زمان پاسخ 20 ثانیه می باشد. با وجود همپوشانی که وجود داشت اندازه گیری سرب و جیوه انجام شد. اندازه گیری سرب و جیوه با بهره گرفتن از روش های کالیبراسیون چند متغییره اسپکتروفتومتری حداقل مربعات جزئی ((PLS استفاده شد. برای به دست آوردن کالیبراسیون به مقادیری از مخلوط های سرب و جیوه نیاز می باشد.تصحیح سیگنال عمودی (OSC) و روش مشتق درجه اول از تکنیک های پیش پردازش مورد استفاده برای از بین بردن اطلاعات نامربوط در استفاده از روش اسپکتروفتومتری می باشد. در این مدل از یک مخلوط 25 تایی مختلف از سرب و جیوه استفاده شد. در این پروژه برای اندازه گیری در نمونه های حقیقی از پیش پردازش D-OSC-PLS استفاده شد. مقادیر  RMSEP برای سرب و جیوه توسط  PLS45/0، 31/0،  D-PLS31/0، 21/0،  OSC-PLS17/0، 18/0 و توسط روش  D-OSC-PLS030/0، 03/0 به دست آمد. این روش برای اندازه گیری همزمان سرب و جیوه در نمونه های آبی به کاربرده می شود.

فصل اول

 

مقدمه

 

1-1- كمومتریكس

گستره وسیعی از روش‌های آمار و ریاضی جهت توصیف و تفسیر نتایج آزمایش‌های مختلف ارائه و بررسی شده‌اند. بررسی‌ها و مطالعات انجام شده در این زمینه منجر به پیدایش زیر شاخه‌هایی از قبیل بیومتری[2]، سایكومتری[3]، اكونومتری[4]، آمار دارویی[5] و غیره شده است. با رشد و تكامل سریع دستگاه‌های مورد استفاده در شیمی، در هر آزمایش حجم وسیعی از اطلاعات تولید می‌شود. این حجم زیاد داده‌ها، احتیاج به روش‌هایی جهت كاهش داده‌ها، نمایش واضح‌تر و استخراج اطلاعات مفیدتر را افزایش می‌دهد.

بدین ترتیب همراه با توسعه و پیشرفت شیمی تجزیه دستگاهی، علوم كامپیوتر و تكنولوژی و به عنوان ابزارهای كمكی جهت تسهیل به كار گرفته شدند. به كارگیری ریاضی، آمار پیشرفته و كامپیوتر در شیمی منجر به پیدایش شاخه‌ای جدید به نام كمومتریكس گردید.

علم جوان و جدید كمومتریكس در دهه‌ های اخیر رشد چشمگیری داشته است. این پیشرفت قابل ملاحظه به توسعه ابزارهای هوشمند و خودكار شدن آزمایشگاه ها و استفاده از كامپیوترهای قدرتمند بر می‌گردد. در دهه هفتاد میلادی بسیاری از گروه‌های تحقیقاتی شیمی تجزیه از روش‌های آماری و ریاضی در آنالیزهای خود استفاده كردند. امروزه كمومتریكس به ابزاری مناسب برای آنالیز كمی در همه زمینه‌های شیمی و به خصوص تجزیه تبدیل شده است و كمتر آنالیستی هست كه به استفاده از روش‌های ریاضی و آماری در كارهای روزمره خود نیاز پیدا نكند [5-1].

ریشه كمومتریكس به سال 1969 بر  می‌گردد وقتی كه  جورز،[6]  كوالسكی[7] و  آیزنهاور[8]  مقالاتی را  در زمینه

موضوعات: بدون موضوع  لینک ثابت
 [ 10:48:00 ب.ظ ]




معایب پلیمریزاسیون امولسیونی هم از قسمت به قسمت بودن واکنش ناشی می­ شود. محلول واکنش معمولاً دارای مقداری افزودنی مثل سورفکتانت و اجزای آغازگر می­باشد و حذف این مواد مشکل بوده و می ­تواند کیفیت محصولات لاتکس نهایی را تحت تأثیر قرار دهد (شكل شماره 1-1)، همچنین در مواردی که خود پلیمر مورد نیاز باشد حذف فاز پیوستۀ آبی ضرورت دارد و هزینه‎های اضافی را تحمیل می‎کند.

شکل شماره1-1 . شمای کلی از روندانجام واکنش پلیمریزاسیون امولسیونی]2[

محصولات پلیمریزاسیون امولسیونی به صورت لاتکس یا به صورت مادۀ خام بعد از حذف فاز پیوسته قابل استفاده می­باشند. از جملۀ مشهودترین کاربردهای این محصولات که بخشی از زندگی روزمرۀ ما را تشکیل می­دهد می­توان به رنگ‎های لاتکس، روکش‎های کاغذ، روکش­های منسوجات و چسب‎ها اشاره کرد ودراین میان پلیمرهای امولسیونی ویژه که از اهمیت صنعتی بالایی برخوردار هستند در مواردخاصی مانند افزودنی­های سیمان، اصلاح کننده­ های رئولوژی و لاتکس‎های زیست پزشکی نیز استفاده می‎شوند.

پلیمریزاسیون امولسیونی یک فرایند پیچیده می­باشد و درکنار اهمیت صنعتی­اش، بحث علمی وسیعی در مورد آن صورت گرفته است.

کارهای وسیعی به منظور درک بهتر و توضیح کمّی مکانیسم­هایی که طی فرایند اتفاق می‎افتد انجام گرفته است‎، لذا کنترل واکنش­های پلیمریزاسیون امولسیونی از مسائل کلیدی بوده ودر بررسی‎های علمی از اهمیت زیادی برخوردار میباشد.]1-2[

1-2 پلیمریزاسیون امولسیونی وینیل استات

اگرچه حدود یک سوم از منومر وینیل استات برای تولید لاتکس‎ها به صورت رنگ‎ها و چسب‎ها مورد استفاده قرار می‎گیردولی اطلاعات منتشره در خصوص پلیمر شدن امولسیونی وینیل استات محدود می‎باشد. پلیمر شدن امولسیونی وینیل استات شاید در میان روش‎های پلیمر شدن با توجه به اینکه لاتکس‎های واقعی با سطح فعالهای آنیونی و یا کاتیونی و یا سطح فعالهای غیر یونی یا کلوئیدی حفاظتی و همراه با ترکیب دو یا بیشتر از این مواد و همچنین بدون امولسیون کننده‎ای به وجود می‎آید منحصر به فرد است.

از نگاه صنعتی‎، پلیمر شدن تعلیقی وینیل استات برای تولید گرانول پلی وینیل استات بالاترین اهمیت را داردو اغلب این گرانول‎ها به پلی وینیل الکل با تنوع درجه آبکافت و با وزن مولکولی متفاوت تبدیل می‎گردند. در مقیاس آزمایشگاهی کوپلیمر شدن وینیل استات با منومرهای دیگر شاید با توجه به راحتی عمل و راحتی به وجود آوردن محیط تعلیقی مناسب مزیت داشته باشد.گفتنی است پلیمریزاسیون صنعتی امولسیونی این منومربه صورت همو یا کوپلیمر شدن از اهمیت فراوانی برخوردار است علی الخصوص در توسعه چسب ها، رنگ ها، پوشش دهی کاغذ و تکمیل در نساجی.

این پلیمر از سالهای 1940 به دلیل داشتن خواصی چون چسبندگی سریع، مقاومت مكانیكی خوب و قابلیت چسبندگی به سطوح صاف و صیقلی، كاربردهای وسیعی پیداكرد ولی باید توجه داشت كه این پلیمر، رزینی سخت [1] و شكننده‏[2] ا‏ست. برای بر‏طرف كردن چنین نقیصه‏ای ابتدا از نرم‏كننده‏ها [3] استفاده شد. نرم‏كننده‏ها معمولاً یک مولكول بزرگ مانند دی‏اكتیل‏فتالات[4] یا دی‏متیل‏فتالات[5] هستند كه با كاهش تماس زنجیرهای

پایان نامه

 پلیمری به‏هم، تحرك بیشتری به آنها می‏دهند. نکتة منفی استفاده از نرم‏كننده‏ها این است كه مولكولها به‏طور شیمیایی به‏هم وابسته نیستند و احتمال اینكه این مواد از پلیمر جداشده و به طرف سطح مهاجرت كنند، وجود دارد و نهایتاً بازهم پلیمر سخت ‏شده و چسبندگی كاهش خواهد یافت]3-4[.

درکل نقاط ضعفی که گاها متوجه محصولات برگرفته از پلی وینیل استات (چسب چوب،لاتکس‎های مورد استفاده درکاربردها‎ی پوشش دهی سطح و…) می‎شود را می‎توان درموارد ذیل خلاصه کرد:

1- مقاومت ضعیف دربرابر آب ورطوبت

2- عملکرد نسبتاً ضعیف دردمای بالا

3- حساسیت زیاد نسبت به خزش

تمامی مواردمطرح شده را می‎توان مرتبط باساختارفیزیکی پلی وینیل استات دانست چراکه این پلیمر دارای ساختاری قطبی با جاذبه‎های نسبتا ضعیف واندروالسی میان زنجیره هایش بوده وهمین امر منجربه کاهش دمای انتقال شیشه‎ای این پلیمر شده است، دراین میان برخی تحقیقات صورت گرفته درسالیان اخیر باهدف بهبود واصلاح خواص پلی وینیل استات باتوجه به کاربری این پلیمر به کمک اصلاح کننده‎های موجودرا می‎توان در 2 گروه اصلی زیر خلاصه کرد:

1-کوپلیمریزاسیون وینیل استات بابرخی منومرهای آب گریز و یا دارای عوامل فعال

2-آمیزه سازی پلی وینیل استات باافزودنی‎هایی که می‎تواند منجربه ارتقای خواص آن شود.

قابل توجه است که باانجام استراتژی‎های مطرح شده می‎توان در ازای کاهش برخی خواص این پلیمر به اصلاح خواص مدنظر پرداخت که البته دراین میان لزوم استفاده از دستورالعمل خاصی برای حفظ وبهینه سازی تمامی خواص لازم غیرقابل انکاراست.

برای مثال افزودن برخی فیلرها و یامواداسیدی به چسب چوب برپایه پلی وینیل استات (علی رغم اینکه باعث تقویت عملکرد مکانیکی واستحکام فیلم و یاچسب پلی وینیل استات دردمای بالا می‎شود) به زیرلایه چوبی[6] که چسب برآن اعمال می‎شود ضربه زده وکاربری پلی وینیل استات راتحت تاثیرقرار می‎دهد، ازطرفی کوپلیمریزاسیون وینیل استات بامنومرهایی نظیربوتیل آکریلات واتیلن منجر به افزایش نرمی ومقاومت دربرابر آب شده ولی باعث کاهش چشمگیر مدول یانگ، سختی واستحکام برشی محصول نهایی خصوصادردمای بالا می‎شود. درکل می‎توان نتیجه گرفت که به منظور ایجاد وحفظ تمامی خواص دلخواه درپلی وینیل استات میبایست ترکیبی ازاصلاح کننده‎های مربوطه رابکارگرفت، بعبارتی ضمن لزوم وجود خواص مکانیکی واستحکام مناسب به کمک آمیزه سازی پلی وینیل استات باافزودنی‎های مناسب وتشکیل نوعی کامپوزیت، به کمک کوپلیمریزاسیون منومر وینیل استات بامنومرهایی با دمای انتقال شیشه ای[7] کمتر باهدف کاهش دمای انتقال شیشه‎ای پلیمر حاصله ورهایی ازنقیصه شکنندگی وضعف دربرابر رطوبت منسوب به پلی وینیل استات به ترکیبی ازخواص مطلوب برای این پلیمر دست یافت]5[.

1-2-1 پلیمریزاسیون امولسیونی وینیل استات – α الفین

مونومرهایی كه برای تركیب با وینیل‏استات مورد استفاده ‏قرار می‏گیرند عبارت‏است از: دی‏بوتیل‏مالئات، دی‏بوتیل فومارات، بوتیل اكریلات، وینیل لائورات، وینیل‏استئارات، اتیل‏آكریلات و اتیلن. مهمترین امتیاز اتیلن علاوه بر غیر سمی بودن، ارزانی آن است .

پلیمریزاسیون آلکن‎ها به دلیل خواص شیمیایی ومکانیکی مطلوب پلیمرهای حاصل‎، بسیار رایج بوده است ولی زمانی که نیاز به وجود گروه های قطبی و یا گروه های عاملی خاص به منظورایجاد چسبندگی به سطح وجود دارد، این دسته از پلیمرهادارای نقاط ضعفی میباشند‎، لذا زمانی که منومرهای اولفینی در مجاورت منومرهای قطبی قرارگیرند شاهد بهبود خواص فیزیکی‎، مکانیکی‎، نوری و همچنین بهبود چسبندگی به سطح می‎باشیم که این فرایند، پلیمرهای حاصل را درکاربردهای پوشش دهی سطح‎، نوری و پزشکی مستعد میسازد ] 6 [.

برای مثال كوپلیمر وینیل‏استات-اتیلن در برابر اشعة ماوراء بنفش [8] و مواد آلكانی مقاوم است و به همین علت كوپلیمر اتیلن وینیل استات[9] به‏‏طور گسترده‏ای در صنایع مختلف به‏كار‏گرفته‏شده‏اند و بسته به مقدار مونومرهای اتیلن و وینیل‏استات كوپلیمر حاصل خواص متفاوتی خواهد داشت و به همین دلیل كاربردهای متنوعی دارد [3-4].

موضوعات: بدون موضوع  لینک ثابت
 [ 10:47:00 ب.ظ ]




فهرست مطالب

عنوان                                               صفحه

1-1- هیدرات گازی.. 2

1-2- هیدرات‌های گازی در گذر زمان.. 3

1-3- ساختار هیدرات‌های گازی.. 4

1-3-1- ساختار sI. 5

1-3-2- ساختار sII. 6

1-3-3- ساختار sH.. 6

1-3-4- نکاتی مربوط به ساختار‌های هیدرات.. 7

1-4- مشخصات مولکول مهمان.. 8

1-5- هیدرات­های گازی در طبیعت… 8

1-6- اهمیت هیدرات‌های گازی.. 10

1-6-1- مزایای هیدرات گازی.. 11

1-6-1-1- انتقال گاز طبیعی.. 11

1-6-1-2- منبع انرژی.. 12

1-6-1-3- جداسازی دی­اکسیدکربن.. 12

1-6-1-4- هیدرات‌های گازی در صنعت غذایی.. 13

1-6-1-4-1- تغلیظ آب میوه­ ها 13

1-6-1-4-2- شیرین­سازی آب دریا 13

1-6-1-4-3- جداسازی آنزیم­ها 14

1-6-2- مضرات هیدرات گازی.. 14

1-7- بازدارنده­ها 15

1-7-1- بازدارنده‌های ترمودینامیکی.. 15

1-7-2- بازدارنده‌های غیرترمودینامیکی.. 16

1-7-3- معیار‌های بازدارنده. 16

1-8- جذب.. 17

2-1- تاریخچه­ی شبیه­سازی.. 20

2-2- شبیه سازی دینامیک مولکولی.. 21

2-3- سامانه های مدل و پتانسیل های برهمکنش…. 21

2-4- معرفی مدل پتانسیل برای برهمکنش بین مولکول های سازندهی سامانه. 23

2-5- معرفی مدل پتانسیل برای برهمکنش بین سیستم و محیط.. 23

2-5-1- شرایط مرزی دوره­ای.. 24

2-5-2- قطع پتانسیل و قرارداد نزدیکترین تصویر. 25

2-6- الگوریتم انتگرال­گیری زمانی.. 25

2-6-1- الگوریتم ورله. 26

2-6-2- الگوریتم جهشی ورله. 27

2-6-3- الگوریتم ورله سرعتی.. 28

2-7- اولین گام در شبیه سازی دینامیک مولکولی.. 29

2-7-1- تعیین مکان­های اولیه ی ذرات.. 29

2-7-2- تعیین سرعت­های اولیه ی ذرات.. 30

2-8- دومین گام در شبیه­سازی دینامیک مولکولی.. 30

2-9- سومین گام در شبیه­سازی دینامیک مولکولی اندازه گیری خواص ترمودینامیکی.. 31

2-10- چهارمین گام در شبیه­سازی دینامیک مولکولی: تحلیل نتایج.. 32

2-11- انواع مجموعه ها در شبیه­سازی دینامیک مولکولی.. 32

2-12- انواع خطاها در شبیه­سازی دینامیک مولکولی.. 33

2-12-1- خطاهای آماری.. 33

2-12-2- خطاهای سیستماتیک… 33

2-13- محدودیت­های شبیه­سازی دینامیک مولکولی.. 34

2-13-1- اثرات کوانتومی.. 34

2-13-2- تعیین پتانسیل­های برهمکنش…. 34

3-1- انواع خواص ترمودینامیکی.. 36

3-1-1- توابع ترمودینامیکی ساده. 36

3-1-1-1- انرژی داخلی.. 36

3-1-1-2- فشار. 37

3-1-1-3- میانگین مجذور نیرو. 37

3-1-2- توابع ترمودینامیکی پاسخ.. 38

3-1-3- خواص وابسته به انتروپی.. 39

3-1-3-1- انتگرال گیری ترمودینامیکی.. 40

3-1-3-2- روش ذره­ی آزمایشی.. 40

3-1-4- انرژی آزاد. 41

3-2- انواع روش­ها برای محاسبه ی اختلاف انرژی آزاد. 43

3-2-1- اختلال ترمودینامیکی.. 43

3-2-1-1- محاسبه­ی اختلاف انرژی آزاد حلال پوشی بازهای نیتروژن­دار با روش اختلال ترمودینامیکی   44

3-2-1-2- محاسبه­ی اختلاف انرژی آزاد هشت لیگاند مربوط به پروتئین پیوندی FK506 با FKBP12 به روش اختلال ترمودینامیکی.. 46

3-2-2- روش تدریجی.. 50

3-2-3- خط سیر چند مرحله ای.. 50

3-2-4- انتگرال­گیری ترمودینامیکی.. 53

مقالات و پایان نامه ارشد

 

3-3- کاربرد روش­های محاسبه ی اختلاف انرژی آزاد. 53

3-3-1- چرخه­های ترمودینامیکی.. 53

3-3-2- محاسبه­ی انرژی آزاد مطلق.. 55

محاسبات انرژی آزاد گیبس برای تعویض مهمان  در هیدرات گازی  sI با بهره گرفتن از شبیه­سازی دینامیک مولکولی

4-1- روش انتگرال­گیری ترمودینامیکی.. 58

4-2- سابقه تحقیق.. 59

4-3- مشخصات مولکول هیدروژن سولفید. 67

4-4- نرم افزارشبیه سازی و فایل­های ورودی در این تحقیق.. 68

4-4-1- فایل­های ورودی نرم­افزار. 68

4-4-1-1- فایل ساختار اولیه ذرات (CONFIG) 69

4-4-1-2- فایل تعیین پارامترهای کنترل شبیه­سازی (CONTROL) 71

4-4-1-3- تهیه­ فایل ورودی (FIELD) 72

4-4-2- فایل­های خروجی نرم افزار. 73

4-4-2-1- فایل ساختار نهایی ذرات (REVCON) 74

4-4-2-2- فایل خروجی اصلی شبیه­سازی (OUTPUT) 74

4-4-2-3- فایل اطلاعات روند شبیه­سازی به زبان ماشین (REVIVE) 74

4-5- محاسبه ی انرژی آزاد جانشینی های مختلف هیدروژن سولفید به جای متان در هیدرات­های گازی sI  75

4-6- محاسبه­ی خواص ساختاری و ترمودینامیکی.. 83

4-6-1- تابع توزیع شعاعی.. 84

4-6-2- بررسی وابستگی حجم سلول واحد به دما 92

4-6-3- بررسی ضریب انبساط گرمایی خطی.. 97

4-6-4- بررسی ضریب تراکم­پذیری هم دما 105

فهرست شکل ها

عنوان                                                                         صفحه

شکل (1- 1) رشد مقاله‌های مربوط به هیدرات‌های گازی در قرن بیستم. 4

) 4

شکل (1- 3) سلول واحد (الف) ساختار sI ، (ب) ساختار sII، و (ج) ساختار sH.. 5

 شکل (1- 4) شکل حفره ها در ساختار sI 6

شکل (1- 5) شکل حفره ها در ساختار sII 6

شکل (1- 6) شکل حفره ها درساختار sH.. 7

شکل (1- 7) توزیع کربن آلی در منابع زمین ) بجز در صخره ها( برحسب گیگا تن. 10

شکل (1- 8) منابع پیش بینی شده و کشف شده ی هیدراتهای گازی در کره ی زمین. 10

شکل 2- 1- شرایط مرزی دوره­ای. 24

شکل 3- 1 – فرمول ساختاری هشت لیگاندی که در محاسبات مورد استفاده قرار گرفت.. 48

شکل 3- 3- یک چرخه­ی ترمودینامیکی برای اجتماع L و R و تشکیل یک کمپلکس LR در دو فاز گازی و محلول  55

شکل (4- 1) نسبت  برای مقدارهای مختلف  برای جانشینی  در هیدارت گازی  60

و  (a)  ثابت در Ǻ 5/5. 62

و  (b)  ثابت در kJ/mol 930/2. 63

شکل (4- 4) وابستگی  و  بر حسب . 63

(سمت چپ) مولکول آب   69

. 70

آب.. 71

100. 72

شکل (4- 10) نمودار Gبرحسب λ در واکنش جانشینی دو مولکول مهمان هیدروژن سولفید به جای دو مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50 کلوین. 78

شکل 4- 11- نمودار Gبرحسب λ در واکنش جانشینی سه مولکول مهمان هیدروژن سولفید به جای سه مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50 کلوین. 79

شکل 4- 12- نمودار Gبرحسب λ در واکنش جانشینی پنج مولکول مهمان هیدروژن سولفید به جای پنج مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50 کلوین. 80

شکل 4- 13- نمودار   برحسب  ،در واکنش جانشینی شش مولکول مهمان هیدروژن سولفید به جای شش مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50، 70 و 100 کلوین. 81

شکل 4- 14- نمودار G برحسب λ در واکنش جانشینی یک مولکول مهمان هیدروژن سولفید به جای یک مولکول متان در قفس کوچک هیدرات گازی sI در دمای 50 کلوین. 82

شکل 4- 15- نمودار G برحسب λ در واکنش جانشینی دو مولکول مهمان هیدروژن سولفید به جای دو مولکول متان در قفس کوچک هیدرات گازی sI در دمای 50 کلوین. 83

84

برای یک مایع. 84

. 86

. 86

. 87

. 87

. 88

. 89

) در دمای 50 کلوین. 90

) در دمای 100 کلوین. 90

) در دمای 50 کلوین. 91

) در دمای 125 کلوین. 91

  93

  93

شکل 4- 30- نمودار حجم جعبه شبیه سازی برحسب دما برای سامانه هیدرات گازی sI هیدروژن سولفید  94

S] 94

] 95

S] 95

S] 96

شکل 4- 35- نمودار حجم جعبه شبیه­سازی بر حسب دما برای سامانه هیدرات                  [3L-H2S,3L-CH4,2S-H2S] 96

آب در فشار 1 بار 98

شکل 4- 38- محاسبه وابستگی دمایی بردار شبکه برای هیدرات گازی sI ، با مدل TIP4P آب در فشار 1 بار 99

در فشار 1 بار 99

آب در فشار 1 بار 100

شکل 4- 41- پارامتر شبکه برای دماهای مختلف هیدرات گازی sI، که در هر قفس کوچک یک مولکول هیدروژن سولفید و در هر قفس بزرگ مولکول متان وجود دارد براساس معادله (4-21) 101

وجود دارد براساس معادله      (4-20) 102

آب   103

آب.. 104

شکل 4- 45- نمودار فشاربرحسب حجم سلول واحد برای هیدرات گازی sI متان در دمای                          K 200  105

شکل 4- 46- نمودار فشار برحسب حجم سلول واحد برای هیدرات گازی sI هیدروژن سولفید در دمای K 100  106

 

 فهرست جداول

عنوان                                                                                                             صفحه

جدول (3- 1) تفاوت­های انرژی آزاد محاسبه شده. 45

جدول (3- 3) انرژی آزاد اتصال برای کمپلکس های گالکتین-1/دیساکارید مختلف… 53

در هیدارت گازی sI در دمای200  273 کلوین. 61

∆  بر حسب برای جانشینی همه مهمان­ها در همه­ی قفس­های هیدرات گازی sI 61

5  65

5  66

. 69

سولفیدهیدروژن. 73

جدول (4- 7)پارامترهای لناردجونز و بارهای اتمی جزئی برای مولکول متان. 73

81

102

آب.. 102

آب.. 102

. 104

  104

آب.. 107

200  107

100. 107

 

چکیده

هیدرات های گازی دسته ای از ترکیبات میزبان جامد هستند که نقش مهمی درفرایند­های متعددی همچون ذخیره، انتقال و جدا­سازی گاز، کاتالیزهای نا­همگن و تصفیه آب دارند. این بلور­ها در دمای بالاتر از نقطه انجماد آب و فشار بالا تشکیل می­ شود. برای محاسبه اختلاف انرژی آزاد روش­های مختلفی وجود دارد: 1) اختلال 2) تدریجی 3) انتگرال­گیری ترمودینامیکی، در این تحقیق، از روش انتگرال­گیری ترمودینامیکی برای محاسبه اختلاف انرژی آزاد فرایند­های مختلف جانشینی مهمان هیدروژن سولفید به جای مهمان متان در قفس­های بزرگ و کوچک هیدرات گازی sI به کار می­رود. در محاسبه اختلاف انرژی آزاد با بهره گرفتن از روش انتگرال­گیری ترمودینامیکی برای این فرایند­ها، سهم جداگانه واندروالس و الکتروستاتیک محاسبه شده است. همچنین خواص ساختاری که شامل تابع توزیع شعاعی، وابستگی دمایی حجم، ضریب انبساط گرمایی خطی و ضریب تراکم­پذیری هم­دما، هیدرات گازی sI متان و هیدرات گازی مختلف دو­تایی sI (متان + هیدروژن سولفید) بررسی شده است.

فصل اول

 

هیدرات گازی

 

1-1- هیدرات گازی

هیدرات گازی[1]، یک جامد بلوری است که در آن، مولکول‌­های گاز توسط مولکول­‌های آب احاطه  شده ­اند. گاز­‌های زیادی هستند که ساختار مناسبی برای تشکیل هیدرات دارند که می­توان به کربن­دی­اکسید، هیدروژن­سولفید و هیدرو­کربن­ها

موضوعات: بدون موضوع  لینک ثابت
 [ 10:47:00 ب.ظ ]




فهرست مطالب

عنوان                                                                صفحه

چکیده 1

فصل اول: مقدمات و تعاریف اولیه

1-1 مقدمه. 3

1-2 محاسبات کوانتومی.. 7

1-2-1انواع محاسبات کوانتومی.. 7

1-2-2 کاربرد محاسبات کوانتومی.. 8

1-3 یون کبالت و خواص آنها 11

1-3-1 کاربرد کبالت… 14

1- 4 یون جیوه و خواص آن. 15

1-4-1 کاربرد جیوه 17

1-5 یون سرب وخواص آن. 18

1-5-1 کاربرد سرب… 22

1-6 یون آلومینیوم و خواص آن. 28

1-6-1 کاربرد آلومینیوم. 30

1-7  نانولوله های کربنی و ویژگی های آنها 31

1-7-1 کاربرد نانولوله های کربنی.. 32

1-8 نانولوله های بور نیترید. 33

1-8-1 کاربرد نانو لوله های بور نیتریدو ویژگی های آنها 34

فصل دوم: مروری بر اطلاعات لازم

2-1 مقدمه. 36

2-2 نقاط کوانتومی.. 38

2-3 محاسبه شعاع نانو لوله ها 43

2-4 پیوند یونی.. 45

فصل سوم: روش انجام کار

3-1 روش های انجام کار. 52

3-2 انرژی اتصال. 59

3-3  ممان دوقطبی.. 61

3-4  محاسبات خواص بنیادی.. 62

3-4-1 بررسی مقادیر انرژی یونش… 63

3-4-2 بررسی مقادیر الکترونخواهی.. 64

3-4-3 بررسی مقادیر پتانسیل شیمیایی.. 64

3-4-4 بررسی مقادیر سختی و نرمی.. 64

3-5( شکاف بین HOMO و LUMO.. 64

منابع و مأخذ. 90

فهرست جداول

عنوان                                                                                            صفحه

جدول 1-1 خواص اتمی، فیزیکی و شیمیایی کبالت… 12

جدول 1-2 خواص حرارتی و الکتریکی کبالت… 13

جدول 1-3 خواص اتمی، فیزیکی و شیمیایی جیوه 16

شکل 1-4 خواص اتمی، فیزیکی و شیمیایی سرب… 20

جدول 1-5 خواص مکانیکی و حرارتی سرب… 20

جدول 1-6 خواص اتمی، فیزیکی و شیمیایی آلومینیوم. 29

جدول 3-1 انرژی ساختارها بعد از قرار گرفتن یون های کبالت(II)، سرب(II)، جیوه(II)، آلومینیم(III)، در داخل نانو لوله‎ها به روشDFT با توابع هیبریدی B3LYP و سری پایه LanL2DZ. 60

جدول 3-2 ممان دو قطبی ساختار ها، قبل و بعد از برهمکنش یون های کبالت(II)، سرب(II)، جیوه(II)،آلومینیم(III)، با نانولوله ها به روشDFT با توابع هیبریدی B3LYP و سری پایه LanL2DZ   برحسب دبای.. 61

جدول 3-3 بررسی خواص بنیادی ساختارها 63

جدول 3-4 شکاف بین HOMO – LUMO بعد از قرار گرفتن یونها در داخل نانولوله ها به روش DFT/B3LYP و سری پایه Lanl2DZ برحسب ev. 65

فهرست اشکال

عنوان                                                                                       صفحه

 

پایان نامه و مقاله

 

شکل 1-1 نمایش حرکت الکترون در فضای اطراف هسته در مدل اتمی بور. 3

شکل 1-2 نمایش پراش دو شکاف… 4

شکل 1-3 خواص یون کبالت… 12

شکل 1-4 یون جیوه و خواص آن. 16

شکل 1-5 یون سرب و خواص آن. 20

شکل 1-6 یون آلومینیوم و خواص آن. 30

شکل 2-1 مکانیزم هدایت الکتریکی در یک ترکیب نیمه هادی.. 40

شکل 2-2 خاصیت فوتوالکتروشیمیایی نقاط کوانتومی تحت تابش نور الف) ایجاد جریان آندی در حضور ترکیب الکترون دهنده (D) در محلول ب)ایجاد جریان کاتدی در حضور ترکیب الکترون گیرنده (A) در محلول. 43

شکل 2-3 روابط میان اضلاع یک مثلث… 46

شکل 2-4 ارتباط طول بردار کایرال با طول بردارهای m و n.. 46

شکل 2-5 انرژی پتانسیل و فاصله یونی.. 50

شکل3-2 ساختار بهینه شده نانولوله ها بعد از قرار گرفتن یون های کبالت(II)، سرب(II)، جیوه(II)، آلومینیم(III) در داخل آن ها به روشDFT با توابع هیبریدی B3LYP و سری پایه LanL2DZ.. 60

(1)شکل 3-3- ساختار اوربیتال های   HOMO(a) و  LUMO(b) و طیف  DOS CNT & Co(II) 67

(2)شکل 3-4-HOMO وLUMO و طیف  DOS نانولوله. 69

(3) شکل 3-5- اوربیتال های   HOMO(a) و  LUMO(b) وطیف  DOS ساختار CNT &Pb+2 70

CNT )& Al+3. 71

. 73

. 74

(7)شکل 3-9 ساختارHOMO وLUMO طیف DOS نانولوله BNT & Hg+2 75

. 77

. 78

. 79

. 81

. 82

. 84

. 85

. 86

88

چکیده

در سال های اخیر، استفاده از نانولوله ها به عنوان نانو حامل های انتقال دارو مورد تحقیق و بررسی قرار گرفته است. در این تحقیق از نانولوله های کربنی CNT(5-5) و CNT(6-0) و BNNT(6-0) و BNNT(5-5) dopped Ga استفاده شده است.

ابتدا نانولوله ها به‎وسیله نرم افزارهای Gauss View و Nanotube Modeler ترسیم شده و سپس به‎وسیله نرم افزار Gaussian 09  با روش DFT و سری پایه B3LYP/LanL2DZ محاسبه گردید و سپس یونهای سرب (II) ، کبالت (II) و جیوه (II) و آلومینیم (III) در داخل نانولوله هایی قرار گرفت و به روش ذکر شده محاسبه گردید. نتایج حاصل شامل اطلاعات مربوط به انرژی اتصال، ممان دو قطبی، بارهای اتمی، خواص بنیادی (پتانسیل یونش، الکترونخواهی، پتانسیل شیمیایی و سختی و نرمی) و شکاف انرژی HOMO و LUMO محاسبه و ارزیابی شدند و نتایج زیر بدست آمد. از نظر انرژی اتصال و میزان جذب، نانولوله CNT(5,5) بیشترین برهمکنش و جذب را با یون Pb2+ دارد.

از نظر ممان دو قطبی نانولوله BNNT(5,5)dopped Ga بیشترین ممان دو قطبی را با یون Al3+ نشان داده است و ساختار نانولوله CNT(5-5) با یون Al3+ کمترین ممان دو قطبی را دارا است.

مقادیر انرژی یونش نشان داده که ساختار Hg2+ & BNNT-Ga بیشترین انرژی یونش و ساختار Hg2+ & CNT(6,0) کمترین انرژی یونش و بیشترین واکنش پذیری را دارد.

مقادیر شکاف HOMO و LUMO در یونها قبل از برهمکنش با نانولوله ها زیاد و بعد از برهمکنش آن کاهش پیدا کرده است که این کاهش نشان دهنده انتقال بار و افزایش رسانایی می باشد و در بین ساختارها بعد از قرار گرفتن یون در داخل آنها، ساختار Hg2+ & BNNT-Ga بیشترین شکاف و کمترین رسانایی را دارا هستند.

کلیدواژه ها: محاسبات کوآنتومی، برهمکنش یونها، نانولوله های کربنی و بور نیتریدو DFT

فصل اول

 

مقدمات و تعاریف اولیه

 

1-1 مقدمه

مدل اتمی بور كه تا پیش از پیدایش مكانیک كوانتومی،كاملترین نظریه در توصیف جهان خُرد بود، نمی توانست در مورد قواعد انتخاب اتم هیدروژن اظهار نظر درستی نماید. بر طبق چنین قواعدی كه از لحاظ تجربی مشاهده شده بودند، تنها ترازهای معینی از انرژی دیده می شوند. در واقع الكترون اتم هیدروژن، هر انرژی دلخواهی ندارد و تنها مقید به برخی انرژی های معین است. نظریه اتمی بور كه امروزه نظریه كوانتوم قدیم خوانده می شود، ریشه های در مكانیک كوانتومی نداشت و اصول خود را از مكانیک كلاسیک به وام می‎گرفت. با این حال، نظریه بور به وضوح، گسستگی ترازهای انرژی را در اتم هیدروژن نشان می داد. در این نظریه علاوه بر انرژی، اندازه حركت زاویهای هم كمیتی گسسته بود. حتی فضای حركت الكترون به دور دسته هم محدود به مدارهای خاص با فاصله معینی از هسته می‎شد. تمایز نظریه كوانتوم قدیم و مكانیک كلاسیک در گسسته بودن مقادیر كمیتهایی مثل انرژی و اندازه حركت زاویه های بود.همان طور كه در شكل 1-1 می‎بینید در نظریۀ  بور، الكترون روی ترازهایی با انرژی و شعاع معین از هسته قرار دارد.

این نظریه عدم سقوط الكترون بر روی هسته اتم هیدروژن را نیز توجیه می نمود. چون الكترون تنها می تواند در مدارهای معینی باشد، در گذر از مداری به مدار دیگر، انرژی از خود نشر میكند كه مقدار آن دقیقاً برابر با انرژی جدا كنندگی این دو تراز از همدیگر است. اوایل قرن بیستم آزمایشات جدیدی آغاز شد كه نكاتی را در مورد صحت و سقم مكانیک سیالات آشكار ساخت. یكی از آنها كه ظرفیت گرمای در حجم ثابت و در فشار ثابت  اجسام بود.[1و11]

شکل 1-1 نمایش حرکت الکترون در فضای اطراف هسته در مدل اتمی بور

طبق نظریۀ كلاسیک و بر اساس اصل همبخشی سهم ارتعاش  باید برابر  باشد اما در عمل وابستگی دمایی زیادی برای  مشاهده شد. در ابتدا ماكس پلانك بود كه با فرض گسسته بودن مقادیر انرژی، توانست مدلی رضایتبخش برای توصیف تابش دمایی از یک كاواك فراهم سازد. نظریه ی وی به دلیل این فرض بسیار عجیب و غیرمتداول كه انرژی مقادیر گسسته ای دارد، طرد شد. اما چند سال بعد اَینشتن در آزمایش فتوالكتریک درستی این فرض را نشان داد. وی طی آزمایشی كه به اثر فتوالكتریک معروف شد نشان داد كه تنها مقادیر معینی از انرژی مجاز هستند و انرژی، كمیتی گسسته است. در این آزمایش سطح صاف فلزی مانند  را تحت تابش قرار می دهند و دو سر آن را به دو الكترود وصل می‎كنند. جریان الكتریكی ناشی از كنده شدن الكترونها باعث ثبت اختلاف ولتاژ میشود. در این آزمایش نور رفتار بسیار متفاوتی با آنچه كه در مورد آن دانسته می شد ارائه داد.[1]

طبق مكانیک كلاسیكی فرض می شود كه انرژی تابش متناظر با شدت تابش است. بنابراین در آزمایش فتوالكتریک انتظار می رفت كه با افزایش شدت نور تابیده شده به سطح فلز، جریان بیشتری حاصل آید. اما در عمل با افزایش شدت نور هیچ تغییری در جریان خروجی حاصل نشد. از سوی دیگر در مكانیک كلاسیک با افزایش فركانس نباید تغییری در شدت جریان رخ دهد. اما مشاهده شد كه با افزایش فركانس و رسیدن به حد معینی (فركانس آستانه) شدت جریان زیاد میشود. پس آزمایش نشان می دهد كه انرژی به فركانس بستگی دارد. آینشتن سرانجام رابطۀ زیر را برای توصیف این پدیده پیشنهاد نمود:

در اینجا  فركانس آستانه است كه اگر فركانس تابش كمتر از آن باشد جذبی صورت نمیگیرد و  انرژی جنبشی الكترون خروجی از سطح است. وی پیشنهاد نمود كه نور باید رفتار غیر موجی داشته باشد و باید ذرهای عمل نماید. پیش از این نیز نیوتن ماهیت ذرهای برای نور قائل بود. اما آزمایش هایی مثل آزمایش یانگ (آزمایش دو شكاف) موجی بودن نور را نشان میدادند. در آزمایش یانگ با گذشتن نور از دو شكاف در كنار هم الگوی پراشی در پرده مشاهده می شود كه به سادگی از مكانیک موجی نتیجه گرفته می‎شود[8و1].

شکل 1-2 نمایش پراش دو شکاف

اما نظریه‎ی كوانتومی بر پایه‎ی گسسته بودن مقادیر كمیت‎ها به رشد خود ادامه داد و پس از فرمول‎بندی در سال 1925 توسط هایزنبرگ و 1926 توسط شرودینگر تا اوایل دهه چهل، آن قدر مسائل لاینحلی را حل نمود كه قابل تصور نبود. مكانیک كوانتومی نظریه ای كاملاً آماری است و بسیاری از قواعد آماری كلاسیک در آن موجود هستند. با این تفاوت كه آمار در مكانیک كلاسیک برای مجموعه ای از سیستم ها و به دلیل جهل ما از وضعیت كامل سیستم استفاده می‎شد، اما در مكانیک كوانتومی به دلیل این كه پدیده‎ها ذاتاً آماری هستند مورد استفاده قرار میگیرد. حتی آمار كوانتومی برای تك سیستم های منفرد وجود دارد. مضاعف بر این كه احتمال در مكانیک كوانتومی ارجاع به وضعیت حال سیستم ندارد و تنها در مورد پس از انجام عمل اندازه گیری است. اما در مكانیک كلاسیك، احتمال وضعیت فعلی سیستم را تشریح می‎كند.[8]

به فاجعه ماوراءبنفش معروف شد شكست مطلق مكانیک آماری كلاسیک در توصیف تغییرات مضرّات و آثار سوء کوتاه مدت، میان مدت و بلند مدت مربوط به انواع مختلف آلودگی[1] آب، هوا، خاک، پسماندهای خطرناک[2]، فلزات سنگین و غیره بر کسی پوشیده نیست. امروزه در سراسر گیتی، هزینه هایی گزاف در راستای کنترل و بی خطرسازی آلاینده ها مصرف می گردد و بدیهی است کشور ما نیز با توجه به روند پرشتاب توسعه، از این امر مستثنی نخواهد بود. بنابراین، هرگونه پژوهش مفید در این زمینه ها می تواند کمکی قابل ملاحظه به حفاظت و صیانت از محیط زیست و تضمین سلامت مردم نماید؛ ضمن آنکه پدیده مخرب ریزگردها[3] را نیز که استان های کشور به طور جدی با آن دست به گریبان هستند نباید به فراموشی سپرد.

از طرف دیگر، پدیده های مرتبط با مقیاس نانو در بسیاری از فرایندهای محیط زیستی غالب هستند؛ بنابراین، اینگونه میانکنش ها دارای اهمیت ویژه در حوزه محیط زیست و سلامت انسان می‎باشند. با توجه به اینکه واکنش های رایج در مقیاس نانو، ذاتاً در سطح مولکولی روی می دهند، هماهنگی دقیق در خصوص مطالعه ذراتِ در مقیاس نانو مرتبط با سیستم های طبیعی از یکسو، و قوانین شیمی کوانتومی[4] و شیمی محاسباتی[5]  وجود دارد. [9و7]

مبنای شیمی کوانتومی و شیمی محاسباتی، مدلسازی و انجام محاسبات بسیار پیچیده، طولانی و زمان بر،  براساس تحلیل انواع مختلف معادلات شرودینگر[6] و دیگر مدلهای ریاضی پیشرفته در مکانیک کوانتومی میباشد که از طریق به کارگیری کامپیوترهای با کیفیت و قدرتمند و استفاده از نرم افزارهای کاملاً تخصصی، مطالعه و پژوهش در این زمینه ها انجام می‎پذیرد.

نظر به اینکه ذرات بسیار ریز مقیاس، ویژگی های خاصی را از خود نشان می‎دهند به طوری که می‎توان آنها را به تفکیک مطالعه کرد و همچنین واکنش های آنها را در ارتباط با سایر نانوذرات بررسی نمود، توجهی خاص به پژوهش در این مسیر معطوف شده است. به ویژه در مورد نانوذرات، بررسی خصوصیاتِ مرتبط با مقیاس اتمیِ اینگونه ذرات در محیط زیست، انواع برهم‎کنش های احتمالی و به خصوص، امکان پیش بینیِ نتایجِ متنوع حاصله و مسیرهای کنترل آنها در محیط زیست، حائز اهمیت فوق العاده است.

در اغلب موارد، نانوذرات با به اصطلاح میزبان‎هایی دیگر نیز مرتبط و همساز می‎باشند؛ بطور مثال، از اینگونه میزبان ها در محیط زیست می توان به نانوذرات فلزی موجود در سولفیدها، هسته های کربنی ترکیبات آلی، سولفیدهای

موضوعات: بدون موضوع  لینک ثابت
 [ 10:47:00 ب.ظ ]