کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو



 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 



1-1) اجزای اصلی QSAR   3
1-2) انواع روش‌های QSAR   4
1-3) اهداف QSAR   5
1-4) نگاهی گذرا برمایعات یونی   5
فصل دوم: تئوری.. 8
2-1) جمع‌ آوری سری داده‌ها………………………………………………………………………………………………………………..10
2-1-1) روش‌های تقسیم بندی سری داده‌ها……………………………………………………………………………………………….10
2-1-1-1) تحلیل خوشه‌ای (CA)……………………………………………………………………………………………………….11
2-1-1-2) انواع خوشه‌بندی……………………………………………………………………………………………… …………….12
2-1-1-3) اندازه‌گیری فاصله ……………………………………………………………………………………………………………13
2-1-1-4) دسته‌بندی تفکیکی……………………………………………………………………………………………………………14
2-1-1-4-1) دسته بندی مبهم C- میانگین………………………………………………………………………………………….14
2-1-1-4-2) الگوریتم دسته‌بندی QT………………………………………………………………………………………………15
2-1-1-4-3) خوشه بندی K- میانگین………………………………………………………………………………………………15
2-2) بهینه‌سازی ساختارهای مولکولی…………………………………………………………………………………………………………………………….17
2-3) محاسبه توصیف‌کننده‌های مولکولی   17
2-3-1) توصیف‌کننده‌های ساختاری………………………………………………………………………………………………………………………..19
2-3-2) توصیف کننده‌های توپولوژیکی……………………………………………………………………………………………………………………19
2-3-2-1) توصیف‌كننده‌های جزء……………………………………………………………………………………………………………………..19
2-3-2-2) اندیس‌های توپولوژی   19
2-3-2-3) توصیف‌كننده‌های زیرساختاری   20
2-3-2-4) توصیف‌كننده‌های محیطی………………………………………………………………………………………………………………….20
2-3-3) توصیف‌كننده‌های هندسی.. 20
2-3-4) توصیف‌کننده‌های الکترونی.. 21
2-3-5) توصیف‌کننده‌های فیزیکو شیمیایی………………………………………………………………………………………………………………..21
2-3-6) توصیف‌کننده‌های توسعه یافته………………………………………………………………………………………………………………………21
2-3-7) توصیف‌کننده‌های LFER……………………………………………………………………………………………………………………………22
2-4) تجزیه و تحلیل آماری توصیف‌کننده‌ها و انتخاب مؤثرترین آنها…………………………………………………………………………………..22
2-4-1) الگوریتم ژنتیک (GA)……………………………………………………………………………………………………………………………….23
2-4-1-1) اصول الگوریتم‌های ژنتیكی…………………………………………………………………………………………………24        2-4-1-2) روش‌های انتخاب…………………………………………………………………………………………………………………….25
2-5) ایجاد مدل­های آماری 26
2-5-1) رگرسیون خطی چندگانه…………………………………………………………………………………………………………..26
2-5-2) شبکه‌های عصبی پرسپترون چندلایه(MLP)…………………………………………………………………………………….27
2-5-2-1) تک نرون و ساختار (MLP)………………………………………………………………………………………………..28
2-5-2-2) پرسپترون چند لایه……………………………………………………………………………………………………………30
2-5-2-3) آموزش شبکه‌های عصبی MLP……………………………………………………………………………………………30
2-6) انتخاب بهترین مدل و ارزیابی اعتبار مدل انتخاب شده 33
2-6-1) قلمرو كاربرد مدل………………………………………………………………………………………………………………….37
2-7) نرم افزارهای مورد استفاده………………………………………………………………………………………………………………………………………………………………38
2-7-1) بسته نرم افزاری Hyperchem………………………………………………………………………………………………………………………38
2-7-2) بسته نرم افزاری MOPAC…………………………………………………………………………………………………………………………..38
2-7-3) بسته نرم افزاریSTATISTICA  39
2-7-4) نرم افزار دراگون. 39
2-7-5) نرم افزار CODESSA………………………………………………………………………………………………………………………………..39
فصل سوم: مدلسازی QSAR سمیت مایعات یونی.. 41
3-1) روش كار  43
3-1-1) سری داده‌ها………………………………………………………………………………………………………………………………………………43
3-1-2) محاسبه و پیش‌پردازش توصیف‌کننده‌ها…………………………………………………………………………………………………………53
3-1-3) انتخاب اعضای سری‌های آموزشی و ارزیابی به روش خوشه‌بندی k-میانگین……………………………………………………….54
3-1-4) انتخاب بهترین توصیف كننده و مدل‌سازی خطی…………………………………………………………………………………………….55
3-1-5) مدلسازی غیر خطی با شبكه‌ی عصبی مصنوعی پرسپترون چند لایه. 56
3-2) بحث و نتیجه‌گیری   57
3-2-1) تفسیر توصیف‌كننده‌ها………………………………………………………………………………………………………………………………..75
3-2-2) بررسی نتایج……………………………………………………………………………………………………………………………………………..61
3-2-3) ارزیابی نتایج مدل………………………………………………………………………………………………………………………………………63
3-3) جمع‌بندی نهایی   65
فصل چهارم: پیش‌بینی دمای ذوب مایعات یونی و نمك‌های مربوطه با بهره‌گیری از رویكرد QSPR.. 67
4-1) روش كار  70
4-1-1) سری داده‌ها………………………………………………………………………………………………………………………………………………70
4-1-2) محاسبه و پیش‌پردازش توصیف‌كننده‌ها…………………………………………………………………………………………………………72
4-1-3) تقسیم‌بندی سری داده‌ها توسط روش تحلیل خوشه‌ای……………………………………………………………………………………….73
4-1-4) انتخاب متغیر و مدل‌سازی خطی……………………………………………………………………………………………………………………74
4-1-5) مدل‌سازی به روش شبكه‌ی عصبی پرسپترون چند لایه (MLP) 77
4-2) بحث و نتیجه‌گیری   79
4-2-1) تفسیر توصیف‌كننده‌ها………………………………………………………………………………………………………………………………..79
4-2-2) ارزیابی نتایج مدل‌ها…………………………………………………………………………………………………………………………………..81
4-3) جمع‌بندی

مقالات و پایان نامه ارشد

 نهایی…………………………………………………………………………………………………………………………………………………82

منابع. 83
 
 
 
فهرست شکل­ها
عنوان                                                                                                                                            صفحه
شکل 2-1: طرحی ساده از خوشه بندی سلسله‌ای…………………………………………………………………………………………………………….. 13
شکل 2-2: شمایی كلی از الگوریتم ژنتیك……………………………………………………………………………………………………………………. 25
شکل 2-3: شمایی كلی از یک نرون……………………………………………………………………………………………………………………………… 29
شکل 2-4: ساختار کلی پرسپترون تک لایه…………………………………………………………………………………………………………………….. 29
شکل 2-5: ساختار شبکه پیشرو دولایه با توابع سیگموید در لایه پنهان و لایه خروجی………………………………………………………….. 30
شکل 2-6: کمینه کلی و کمینه محلی……………………………………………………………………………………………………………………………. 31
شکل 2-7: ساختار کلی آموزش با ناظر…………………………………………………………………………………………………………………………. 32
شکل 3-1: شمایی از شبكه‌ی بهینه شده‌ی پرسپترون………………………………………………………………………………………………………….. 57
شکل 3-2: نمودار مقادیر تجربی سمیت در برابر مقادیر محاسبه شده با مدل پرسپترون چند لایه……………………………………………….. 62
شکل 3-3: نتایج تحلیل حساسیت………………………………………………………………………………………………………………………………….. 63
شکل 3-4: قلمرو كاربرد مدل ارائه شده به صورت نمودار ویلیامز……………………………………………………………………………………… 64
شکل 1-4: نمودار حاصل از آنالیز خوشه‌ای……………………………………………………………………………………………………………………. 76
شکل 4-2: نمودار تغییر ضریب همبستگی و لگاریتم خطای استاندارد مدل در برابر تعداد توصیف‌كننده‌ها…………………………………. 75
شکل 4-3: شبكه‌ی عصبی پرسپترون طراحی شده جهت پیش‌بینی دمای ذوب مایعات یونی…………………………………………………….. 78
  شکل 4-4: نمودار حاصل از تحلیل حساسیت…………………………………………………………………………………………………………………… 79
شکل 4-5: قلمرو كاربرد مدل……………………………………………………………………………………………………………………………………….. 81
  
فهرست جدول­ها
عنوان                                                                                                                                            صفحه
جدول 3-1: سری داده‌های سمیت تجربی و پیش بینی شده به صورت (log EC50)……………………………………………………………… 44
جدول 3-2: ماتریس ضرایب همبستگی بین توصیف­کننده­ های انتخاب شده………………………………………………………………………….. 55
جدول 3-3: آنیون‌های متنوع به كار رفته در ساختار مایعات یونی موجود در سری داده………………………………………………………….. 60
جدول 3-4: پایه‌های كاتیونی به كار رفته در سری داده……………………………………………………………………………………………………… 61
جدول 3-5: نتایج حاصل از مدل‌های خطی و غیر خطی…………………………………………………………………………………………………….. 62
جدول 4-1: مقادیر پیش‌بینی شده و تجربی دمای ذوب مایعات یونی……………………………………………………………………………………. 70
جدول 4-2: ماتریس ضرایب همبستگی بین توصیف‌كننده‌های انتخاب شده………………………………………………………………………….. 76
جدول 4-3: ضرایب و آماره‌های مدل MLR………………………………………………………………………………………………………………… 77
جدول 4-4: نتایج حاصل از مدل‌های خطی و غیرخطی……………………………………………………………………………………………………… 78
 
 
مقدمه
کمومتریکس یا شیمی سنجی در حقیقت کاربرد علوم آمار، کامپیوتر و ریاضی در شیمی می‌باشد [1]. از روش‌های ذکر شده برای درک بهتر اطلاعات شیمیایی که در آزمایشگاه بدست می‌آید استفاده می‌شود، به این صورت که با بهره گرفتن از تحلیل داده‌های شیمیایی بدست آمده اطلاعات مفید استخراج می شود تا با توجه به این اطلاعات بتوان آزمایش‌های مورد نظر را با بازدهی بهتر طراحی کرد.کاربرد روش‌های ریاضی در شیمی سابقه دیرین دارد ولی با توجه به پیشرفت علوم کامپیوتر و کاربرد آن در علوم روش‌های کمومتریکس در دهه اخیر پیشرفت بسیار داشته است. در این دو دهه روش‌های کمومتریکس مختلفی توسط شیمیدان‌ها با کمک متخصصین علوم کامپیوتر، ریاضی و آمار ارائه شده است. بسیاری از شیمیدان‌ها و کسانی که از روش‌های کمومتریکس استفاده می‌کنند دانشمند سوئدی به نام ولدرا به عنوان اولین کسی که این روش‌ها را معرفی کرده است نام می‌برند و به او لقب پدر علم کمومتریکس را داده‌اند [2]. کمومتریکس درشاخه­های مختلف شیمی مورد استفاده قرار می‌گیـرد. بـرخی از کاربرد­های آن شامل کنترل فرایندها، تجزیه و تحلیل و شناخت الگوها، پردازش علائم و بهینه کردن شرایط می­باشد.  یکی از زمینه ­های مهم کاربرد کمومتریکس در مطالعاتی است که خواص مولکولها را به ویژگی­های ساختاری آنها نسبت می­دهد. موارد خاصی از این تحقیقات و مطالعات شامل موارد رابطه‌ی كمی ساختار-فعالیت(QSAR)، رابطه‌ی كمی ساختار-سمیت(QSTR)، رابطه‌ی كمی ساختار-خصوصیت(QSPR) است که به منظور سهولت و کلی نگری تمامی این موارد تحت عنوان QSAR قرار می گیرند.
1-1) اجزای اصلی QSAR
یک رابطه ی كمی‌ساختار – فعالیت از سه بخش مجزای زیر تشكیل می‌گردد  ;[3]

  • داده‌های معتبر مربوط به فعالیت یا ویژگی مورد مطالعه كه باید مدل سازی و در نهایت پیش بینی شوند. تعدادی از خصوصیاتی كه می‌توانند برای مدل سازی QSAR مورد استفاده قرار گیرند به شرح زیر می‌باشند: فعالیت دارویی، فعالیت سمی، خصوصیات فیزیكوشیمیایی و تاثیرات سموم شیمیایی در محیط زیست.
  • توصیف‌كننده‌ها یا همان متغیرهایی كه مدل براساس آنها ساخته می‌شود. ویژگی‌های هر ملكول كه معمولا با در نظر گرفتن ساختار ملكولی به صورت كمی‌محاسبه می‌شوند، در واقع همان متغیر‌های مورد استفاده در مدل سازی می‌باشند.
  • روشی (اعم از ریاضی یا آماری) كه برای فرمول بندی مدل از آن استفاده می‌گردد.

روش‌های بسیاری جهت مدل سازی QSAR به كار می‌روند كه تعدادی از آن‌ ها به قرار زیر می‌باشند:
رگرسیون خطی چند تایی (MLR)، روشی ریاضی است که معمولا برای برقراری ارتباط بین ویژگی­های ساختاری مولکول و خواص آن در مطالعات QSPR/QSAR به کار می­رود. این روش هنگامی که بین توصیف­کننده­ها بر­هم­کنشی وجود نداشته و ارتباط آن­ها با فعالیت مورد نظر خطی باشد مفید است.[4]
شبکه عصبی مصنوعی (ANN)، كه با تقلید از شبكه ­های عصبی بیولو‍ژیكی مثل مغز انسان ساخته شده ­اند الگویی برای پردازش اطلاعات می­باشند كه بر پایه اتصال به هم پیوسته چندین واحد پردازشی عمل می­كنند [5].
ماشین بردار پشتیبان (SVM)، یكی دیگر از روش­های یادگیری راهنمایی شده است كه از آن برای طبقه بندی و آنالیز رگرسیون استفاده می­كنند[6] .
كمترین مربعات جزیی (PLS)، این روش با روش MLR، تفاوت چندانی ندارد. تنها فرضیاتی كه براساس آن ضرایب متغیرهای مدل محاسبه می‌گردند در دو روش با هم متفاوت است[7] .
1-2) انواع روش های QSAR
روش‌هایQSAR  را می‌توان به سه گروه تقسیم‌بندی کرد[8]. اولین روش، QSAR دو بعدی است که در آن ساختار سه ‌بعدی مولکول در نظر گرفته نمی‌شود. در این روش مولکول با بهره گرفتن از یک سری توصیف‌کننده‌های مولکولی نمایش داده می‌شود که مقادیر عددی آن مشخصه مفاهیم متنوعی از ساختار مولکولی است و در مجموع با در نظر گرفتن فعالیت مشاهده شده مدل پیشگو ساخته می‌شود.
روش دوم QSAR سه بعدی است که بطور مثال با رهیافت CoMFA نشان داده می‌شود [8]. در این روش ساختار سه بعدی مولکول مورد بررسی قرار می‌گیرد. به این منظور ابتدا مولکول در یک شبکه منظم سه‌ بعدی قرار گرفته و سپس برهمکنش‌های الکتروستاتیک و فضایی بین مولکول مورد نظر و یک اتم فرضی قرار گرفته در محل نقاط تقاطع این شبکه توری مانند (مثل کربن)، محاسبه شده و به عنوان توصیف‌کننده استفاده می‌شود تا با ایجاد مدل، برهمکنشهای الکتروستاتیک و فضایی مطلوب بدست آید. به وضوح این روش مزایای بسیار زیادی نسبت به روش ساده‌تر دو بعدی دارد اما پیچیدگی‌های آن نیز بیشتر است.
روش سوم که QSAR چهار بعدی است، یک روش توسعه یافته از QSAR سه بعدی می‌باشد و توسط هاپفینگر و همکارانش ارائه شد [9] که اطلاعات مربوط به صورتبندی را در بعد چهارم در نظر می‌گیرد. مشابه با روش CoMFA،  QSARچهار بعدی با مشخص کردن یک مجموعه از نقاط شبکه که خصوصیات مولکول را ارزیابی کند شروع می‌شود. این روش علاوه بر نقاط شبکه از کل صورتبندی، نمونه برداری کرده و از اطلاعات بدست آمده از آن استفاده می‌کند تا سلولهای اشغال شده در شبکه را ارزیابی کند و از این خصوصیات مولکولی برای ساختن مدل استفاده می‌کند.
 
1-3) اهداف QSAR
روابط كمی‌ساختار – فعالیت باید به عنوان ابزاری علمی‌تلقی گردند كه اجازه ی كشف و همچنین تجزیه و تحلیل روابط نهفته در میان داده‌های موجود را به ما می‌دهند. اهداف زیادی را از ایجاد یک QSAR می‌توان برشمرد كه تعدادی از آنها به صورت زیر است[8]:
1- پیش بینی فعالیت زیستی وخصوصیات فیزیكو- شیمیایی
2- درك بهتر مكانیسم عمل دریک سری از تركیبات شیمیایی
3- صرفه جویی درهزینه‌های تولید محصول ( داروها ، آفت كش‌ها ، و تركیبات شیمیایی جدید)
4- كاهش دادن ودربرخی موارد حتی جایگزینی استفاده از حیوانات آزمایشگاهی
با توجه به این اهداف، مدل سازی خصوصیات مایعات یونی که از پرکاربردترین ترکیبات در علم شیمی بشمار می­روند، می ­تواند بسیار مفید واقع گردد. در ادامه مایعات یونی به صورت مختصر معرفی گردیده­اند.
 
1-4) نگاهی گذرا برمایعات یونی
مایعات یونی اولین بار در سال ١٩١٤ با سنتز اتیل آمونیوم نیترات (نقطه ذوب C˚12) شناخته شدند اما تا سال ١٩۵١ كاربرد گسترده ای نداشتند [10] . در پی یافتن روش جدیدی برای تهیه آلومینیم به طریق آبكاری با مخلوط كردن دو پودر سفید رنگ آلكیل پیریدینیوم كلرید با 3AlCl مشاهده شد که این دو با یكدیگر واكنش می‌دهند و مایع بی رنگ آلكیل پیریدینیوم تتراكلروآلومینات تولید می‌شود[11] . با این توصیف همچنان به این دسته از تركیبات فقط با كنجكاوی نگاه می‌شد تا اینكه در چند دهه اخیر به عنوان جایگزین، برای حلال‌های آلی متداول واكنش‌های شیمیایی مطرح شدند. به طور كلی تعریف‌های گوناگونی برای یک مایع یونی وجود دارند كه شاید پذیرفته شده‌ترین آنها «یک ماده متشكل از یون‌ها با نقطه ذوب پایین‌تر از 100 درجه‌ی سانتی‌گراد» باشد [12] . مایعات یونی را با نام های نمك های مذاب، مایعات یونی غیرآبی یا مایعات یونی دمای اتاق نیز می‌شناسند[13اگر دمای ذوب نمک زیر دمای اتاق (25درجه‌ی سانتی‌گراد) باشد به آن مایع یونی دمای اتاق می‌گویند. این تركیبات متشكل از یک کاتیون آلی غیر متقارن سنگین شامل فسفر یا نیتروژن مانند آلكیل ایمیدازولیوم، پیرولیدینیوم، آمونیم، فسفونیوم و انواع مختلفی از آنیون‌های آلی مانند تری فلئورو استات و یا آنیون‌های معدنی کلرید، برمید، تترافلئوروبورات و هگزافلئوروفسفات و … می‌باشند [13]. ترکیب آنیون‌ها و کاتیون‌های مختلف به طور گسترده تعداد مایعات یونی را گسترش داده‌است و تاکنون بیش از 2000 مایع یونی شناخته شده‌اند. از آنجا که معمولا می‌توان با اتصال یک کاتیون و آنیون خاص مایع یونی مورد نیاز برای یک کاربرد به خصوص را تولید کرد به این حلال‌ها، حلال‌ طراح[17] نیز گفته می‌شود[12] .
مهمترین ویژگی‌های مایعات یونی عبارت‌اند از:[14]

  • خواص فیزیكی مایعات یونی با تغییر تركیب شیمیایی آنیون‌ها و كاتیون‌ها تغییر می‌كنند.
  • مایعات یونی غیر فرارند بنابراین در سیستم‌های با خلاء زیاد قابل استفاده‌اند كه این موضوع از بروز برخی مشكلات فرایندی جلوگیری می‌كند.
  • بسیاری از تركیبات آلی و معدنی در آنها قابل حل‌اند.
  • عدم حلالیت مایعات یونی در برخی از حلال‌ها (مانند آلكان‌ها) یک محیط قطبی غیر آبی ایجاد می‌كند كه این عامل، در سیستم‌های جداسازی دو فازی و چند فازی، بازیابی كاتالیست را (فرایند سبز) آسان می‌كند.
  • این تركیبات می‌توانند، نه تنها به عنوان یک حلال، بلكه به عنوان یک كاتالیست فعال نیز در واكنش شركت كنند.

همچنین مایعات یونی خواص بی نظیر دیگری از قبیل پنجره‌ی الکتروشیمیایی وسیع، هدایت الکتریکی زیاد، تحرک یونی، گستره‌ی دمایی مایع وسیع، به شدت سولواته کننده، عدم فراریت، اشتعال ناپذیری و گستره‌ی پایداری گرمایی وسیع نیز دارند.
[1]. Chemometrics
[2].  Wold
[3]. Quantitative structure activity relationship
[4]. Quantitative structure toxicity relationship
[5]. Quantitative structure property relationship
[6]. Descriptors
[7]. Multiple linear regression
[8]. Artificial neural network
[9]. Support vector machine
[10]. Partial least square

  1. 1. Comparative molecular field analysis
موضوعات: بدون موضوع  لینک ثابت
[دوشنبه 1399-10-01] [ 06:34:00 ب.ظ ]




در مدلهای نیمه تجربی ارائه شده با در دست داشتن نقطه جوش نرمال و جرم مولکولی ماده (ورودی های دمای بحرانی)، تعداد اتم و جرم مولکولی ماده (ورودی های حجم بحرانی) و دمای بحرانی و حجم بحرانی ماده (ورودی های فشار بحرانی)، می توانیم خواص بحرانی را تخمین بزنیم.
مدلهای پیشنهادی در عین سادگی خطای کمی دارند. از دیگر مشخصات مدلها می توان به عمومیت معادلات و قابل دسترس بودن پارامترهای ورودی نیز اشاره کرد.
در پایان تحقیق با مقایسه بین مدل های پیشنهادی و مدل های برگرفته از هوش مصنوعی و نیز 4 رابطه نیمه تجربی، مشخص می شود که مدلهای پیشنهادی دقت خوبی جهت تخمین خواص بحرانی مواد دارند.
میانگین خطای نسبی مدل نهایی برای دمای بحرانی، حجم بحرانی و فشار بحرانی به ترتیب برابر با 86/3 ، 06/5 و 57/5 می باشد که حاکی از دقت کافی مدلها می باشد.
 
کلمات کلیدی:
خواص بحرانی، مدلهای نیمه تجربی، شبکه عصبی مصنوعی
 
فهرست مطالب
عنوان                                                                                                              صفحه
اول: مباحث نظری و تئوری
. 2
. 3
1-2- تاریخچه. 3
1-3- روابط موجود در تخمین خواص بحرانی. 5
1-3-1- رابطه های کاوت.. 5
1-3-2- رابطه های لی- کسلر 7
1-3-3- رابطه های وین- ثیم. 8
1-3-4- رابطه های تعمیم یافته ریاضی- دابرت.. 9
1-3-5- رابطه های تعمیم یافته لین- چاوو 11
1-3-6- رابطه های واتنسیری. 14
1-3-7- رابطه ارائه شده توسط پازوکی و همکارانش… 15
1-3-7-1- مقایسه بین مدل پازوکی با داده های تجربی. 16
1-3-8- مدل یاسر خلیل و همکارانش… 17
دوم: روش های انجام تحقیق
2-1- مقدمه ای بر روش های انجام تحقیق. 20
2-2- شبکه عصبی مصنوعی. 20
2-2-1- سابقه تاریخی شبکه عصبی. 21
2-2-2- شبکه عصبی اشتراک به جلو 22
2-2-3- مزیت های شبکه های عصبی. 23
2-2-4- انواع یادگیری برای شبکه های عصبی. 23
2-2-5- ساختار شبکه‌های عصبی. 25
. 27
. 28
2-2-7- کاربرد شبکه‌های عصبی. 29
2-2-7-1-کاربرد شبکه عصبی مصنوعی در این تحقیق. 30
2-2-8- معایب شبکه‌های عصبی. 31
31
2-3-1- دسته بندی  قواعد انفیس… 32
2-3-1-1- مدل تاکاگی- سوگنو-کانگ.. 32
2-4- شاخص های ارزیابی مدل های بدست آمده 34
سوم: بحث و نتیجه گیری
3-1-هدف تحقیق 36
3-2- مدل های نیمه تجربی ارائه شده 36
3-2-1- مدل ارائه شده برای دمای بحرانی. 37
3-2-2- مدل ارائه شده برای حجم بحرانی. 37
3-2-3- مدل ارائه شده برای فشار بحرانی. 38
3-3- مقایسه مدل های ارائه شده با داده های تجربی 38
3-3-1- مقایسه مدل ارائه شده  برای دمای بحرانی با داده های تجربی 38

مقالات و پایان نامه ارشد

 

3-3-2- مقایسه مدل ارائه شده  برای حجم بحرانی با داده های تجربی 39
3-3-3- مقایسه مدل ارائه شده  برای فشار بحرانی با داده های تجربی 40
3-4- توزیع خطای نسبی مدل های ارائه شده 41
3-5- مدل های ارائه شده توسط شبکه عصبی مصنوعی 42
3-5-1- مدل ارائه شده توسط شبکه عصبی مصنوعی برای دمای بحرانی 42
3-5-1-1- مقایسه مدل ارائه شده توسط شبکه عصبی مصنوعی برای دمای بحرانی 46
3-5-2- مدل ارائه شده توسط شبکه عصبی مصنوعی برای حجم بحرانی 47
3-5-2-1-مقایسه مدل ارائه شده توسط شبکه عصبی مصنوعی برای حجم بحرانی 51
3-5-3- مدل ارائه شده توسط شبکه عصبی مصنوعی برای فشار بحرانی 52
3-5-3-1- مقایسه مدل ارائه شده توسط شبکه عصبی مصنوعی برای فشار بحرانی 56
… 57
. 57
. 59
. 59
. 61
. 61
. 63
3-7- مقایسه مدل های ارائه شده با مدل های دیگر 63
3-7-1- مقایسه مدل ارائه شده برای دمای بحرانی. 64
3-7-2- مقایسه مدل ارائه شده برای حجم بحرانی. 65
3-7-3- مقایسه مدل ارائه شده برای فشار بحرانی. 66
3-8- نتیجه گیری. 68
3-9- پیشنهادات.. 69
. 70
جدول ضمیمه 74
 
 
فهرست جدول­ها
عنوان                                                                                                              صفحه
فصل اول: مباحث تئوری و نظری
جدول 1-1- ثابت های رابطه برای معادله 1-1 و 1-2. 6
جدول 1-2- ثابت های رابطه برای معادله 1-15 9
جدول 1-3- ثابت های رابطه برای معادله 1-17 10
جدول 1-4- ثابت های رابطه برای معادله 1-18. 11
جدول 1-5- ثابت های رابطه برای معادله 1-19. 12
جدول 1-6- ثابت های رابطه برای معادله 1-23 13
جدول 1-7- مقادیر ثابت های ai و bi برای معادله 1-29 15
جدول 1-8- ثابت های رابطه برای معادله 1-30 18
فصل سوم: بحث و نتیجه گیری
جدول 3-1- ثابت های معادله 3-1. 37
جدول 3-2- مقادیر شاخص های آماری برای عصب های مختلف جهت تخمین دمای بحرانی 43
جدول 3-3- مقادیر وزن و بایاس های بهینه مربوط به دمای بحرانی 44
جدول 3-4- شاخص های آماری مربوط به شبکه عصبی بهینه جهت تخمین دمای بحرانی. 46
جدول 3-5- مقادیر شاخص های آماری برای عصب های مختلف جهت تخمین حجم بحرانی 48
جدول 3-6- مقادیر وزن و بایاس های بهینه مربوط به حجم بحرانی 49
جدول 3-7- شاخص های آماری مربوط به شبکه عصبی بهینه جهت تخمین حجم بحرانی. 51
جدول 3-8- مقادیر شاخص های آماری برای عصب های مختلف جهت تخمین فشار بحرانی 53
جدول 3-9- مقادیر وزن و بایاس های بهینه مربوط به فشار بحرانی 54
جدول 3-10- شاخص های آماری مربوط به شبکه عصبی بهینه جهت تخمین فشار بحرانی. 56
جدول 3-11- شاخص های آماری مطلوب برای دمای بحرانی. 58
جدول3-12- پارامترهای توابع عضویت گوسین برای تخمین دمای بحرانی مواد 58
جدول 3-13- ضرایب ارائه شده توسط انفیس برای دمای بحرانی. 58
جدول 3-14- شاخص های آماری مطلوب برای حجم بحرانی. 60
جدول 3-15-پارامترهای توابع عضویت گوسین برای تخمین حجم بحرانی مواد 60
جدول 3-16- ضرایب ارائه شده توسط انفیس برای حجم بحرانی. 60
جدول3-17- شاخص های آماری برای فشار بحرانی. 62
جدول 3-18- پارامترهای توابع عضویت گوسین برای تخمین فشار بحرانی مواد 62
ضرایب ارائه شده توسط انفیس برای فشار بحرانی. 62
جدول 3-20- مقایسه مدل ارائه شده جهت تخمین دمای بحرانی با سایر مدل ها 64
جدول 3-21- مقایسه مدل ارائه شده جهت تخمین حجم بحرانی با سایر مدل ها 65
جدول 3-22- مقایسه مدل ارائه شده جهت تخمین حجم بحرانی با سایر مدل ها 67
 
 
فهرست شکل ها
عنوان                                                                                             صفحه
فصل اول: مباحث تئوری و نظری
شکل 1-1- مقایسه ی مدل پازوکی با داده های تجربی برای دمای بحرانی. 16
شکل 1-2-مقایسه ی مدل پازوکی با داده های تجربی برای فشار بحرانی. 16
شکل 1-3- مقایسه ی مدل پازوکی با داده های تجربی برای حجم بحرانی. 17
فصل دوم: روش های انجام تحقیق
شکل2-1- نمایی از شبکه عصبی تک لایه. 26
شکل2-2- نمایی ازشبکه عصبی چند لایه. 27
شکل2-3- نمایی از شبکه عصبی اشتراک به جلوی سه لایه. 30
شکل2-4- نمایی از قاعده ی عملکرد روش سوگنو 34
فصل سوم: بحث و نتیجه گیری
شکل 3-1-داده های تخمینی توسط مدل به دست آمده برای دمای بحرانی در مقابل داده های آزمایشگاهی 39
شکل 3-2- داده های تخمینی توسط مدل به دست آمده برای حجم بحرانی در مقابل داده های آزمایشگاهی 40
شکل 3-3-داده های تخمینی توسط مدل به دست آمده برای فشار بحرانی در مقابل داده های آزمایشگاهی 41
شکل 3-4- نمودار توزیع خطای نسبی مدل ها برای دما،حجم و فشار بحرانی 42
شکل 3-5-نمایی از مدل شبکه عصبی مصنوعی جهت مدل سازی دمای بحرانی 43
شکل 3-6-رفتار پارامترها در مرحله ی آموزش شبکه جهت پیش بینی دمای بحرانی 45
شکل 3-7-نمودار عملکرد شبکه بهینه جهت پیش بینی دمای بحرانی. 45
شکل 3-8-داده های تخمین زده شده توسط شبکه عصبی مصنوعی در مقابل داده های تجربی برای دمای بحرانی 46
شکل 3-9-نمایی از مدل شبکه عصبی مصنوعی جهت مدل سازی حجم بحرانی 48
شکل 3-10-رفتار پارامترها در مرحله ی آموزش شبکه جهت پیش بینی حجم بحرانی 50
شکل 3-11- نمودار عملکرد شبکه بهینه جهت پیش بینی حجم بحرانی. 50
شکل 3-12-داده های تخمین زده شده توسط شبکه عصبی مصنوعی در مقابل داده های تجربی برای حجم بحرانی 51
شکل 3-13-نمایی از مدل شبکه عصبی مصنوعی جهت مدل سازی فشار بحرانی 53
شکل 3-14-رفتار پارامترها در مرحله ی آموزش شبکه جهت پیش بینی فشار بحرانی 55
شکل 3-15-نمودار عملکرد شبکه بهینه جهت پیش بینی فشار  بحرانی. 55
شکل 3-16-داده های تخمین زده شده توسط شبکه عصبی مصنوعی در مقابل داده های تجربی برای فشار بحرانی 56
شکل3-17- داده های تخمینی توسط انفیس در مقابل داده های تجربی برای دمای بحرانی. 59
شکل3-18- داده های تخمینی توسط انفیس در مقابل داده های تجربی برای حجم بحرانی. 61
شکل3-19- داده های تخمینی توسط انفیس در مقابل داده های تجربی برای فشار بحرانی. 63
شکل 3-20- مقایسه ی نمودار توزیع خطای نسبی مدل ارائه شده با دیگر مدل ها برای دمای بحرانی  65
شکل 3-21- مقایسه ی نمودار توزیع خطای نسبی مدل ارائه شده با دیگر مدل ها برای حجم بحرانی  66
شکل 3-22- مقایسه ی نمودار توزیع خطای نسبی مدل ارائه شده با دیگر مدل ها برای فشار بحرانی  67
 
فصل اول
مشخصات بحرانی: مباحث تئوری
 
 
1-1- مقدمه

موضوعات: بدون موضوع  لینک ثابت
 [ 06:33:00 ب.ظ ]




  • فصل اول 13

1-1 مقدمه. 14
1-2 شناسایی آلاینده فنلی.. 14
1-3 روش های حذف فنل.. 16
1-3-1 جذب سطحی.. 17
1-3-2 رزین‌های تبادل یونی.. 18
1-3-3 انعقاد الکتریکی.. 19
1-3-4 فرایندهای اکسیداسیون پیشرفته. 19
. 20
1-3-6 استفاده از اشعه UV.. 21
1-3-7 روش‌های بیولوژیکی.. 22
1-3-8 فرایندهای غشایی.. 24

  1. فصل دوم 31

2-1مقدمه  32
2-1-1 بیوراکتور غشایی.. 32
2-2 بررسی پژوهش‌های صورت پذیرفته در زمینه حذف فنل توسط بیوراکتور     33

  1. فصل سوم 41

3-1 دینامیک سیالات محاسباتی.. 42
3-2 تشریح فرایند  42
3-3 فرضیات 43
3-4 معادلات برای درون الیاف  45
3-5 معادلات برای غشاء 46
3-6 معادلات برای پوسته. 47
3-7 مکانیزم واکنش     48
3-8 معادله حاکم بر تانک خوراک     49
3-9 معادله حاکم بر تانک سلولی   49

  1. فصل چهارم 50

4-1 مقدمه. 51
4-2 نحوه انجام شبیه سازی به کمک نرم افزار  . 51

  1. فصل پنجم 59

5- 1 مقدمه      60
5-2 توزیع غلظت        60
5-2-1 توزیع غلظت درون الیاف.. 60
5-2-2 توزیع غلظت در پوسته. 61
5-3 توزیع سرعت   62
5-3-1 توزیع سرعت درون الیاف.. 62
5-3-2 توزیع سرعت درون پوسته. 63
5-4 تأثیر شرایط عملیاتی بر بازدهی حذف فنل   64
5-4-1 تأثیر غلظت اولیه. 65
5-4-2 تأثیر دبی جریان‌ فاز سلولی.. 65
5-4-3 تأثیر شعاع خارجی غشاء. 66
5-4-4 تأثیر شعاع داخلی غشاء. 67

  1. فصل ششم 68

6-1 نتیجه گیری   69
6-2 پیشنهادات  69

  1. مراجع 70

 
فهرست شکل ها
شکل ‏1‑1واکنش رزین‌های تبادل یونی[19] 18
شکل ‏1‑2 اکسیدکننده های متداول. 20
شکل ‏1‑3 شماتیک فرایند استخراج فوق بحرانی[30] 21
شکل ‏1‑4 فرایند حذف توسط اشعه فرابنفش[37] 22
شکل ‏1‑5 واکنش ناشی از اشعه فرابنفش[40] 22
شکل ‏1‑6 شماتیک فرایندهای بیولوژیکی[43] 23
شکل ‏1‑7 مقایسه سرعت واکنش: الف) وجود ممانعت کننده سوبسترا ب) عدم وجود ممانعت کننده [45] 24

مقالات و پایان نامه ارشد

 

شکل ‏1‑8 شماتیک فرایند تراوش تبخیری[46] 25
شکل ‏1‑9 شماتیک فرایند غشاهای مایع[52] 26
شکل ‏1‑10 اندازه حفرات غشاء[4] 27
شکل ‏1‑11شماتیک فرایند حذف فنل توسط نانو فیلتراسیون[53] 27
شکل ‏1‑12 الف) بیوراکتور غشایی جریان جانبی  ب) بیوراکتور غشایی غوطه‌ور[54] 28
شکل ‏2‑1بیوراکتورغشایی[55] 32
شکل ‏2‑2 شماتیک بیوراکتور دوفازی[58] 34
شکل ‏2‑3 شماتیک فرایند بیوراکتورغشایی لوله ای[59] 35
شکل ‏2‑4 ترکیب بیوراکتور و فرایند اسمز رو به جلو] [60] 36
شکل ‏2‑5 شماتیک راکتور مورد استفاده توسط ال-ناس[61] 37
شکل ‏2‑6 بیوراکتور غشاء مایع محافظت شده[62] 38
شکل ‏2‑7 شماتیک مدول غشایی استفاده‌شده توسط تریوانس و همکاران [63] 39
شکل ‏2‑8 شماتیک فرایند مورد استفاده شن و همکاران[65] 40
شکل ‏3‑1 فرایند حذف فنل توسط تماس دهنده غشایی بیولوژیکی[68] 43
شکل ‏3‑2 طول توسعه یافتگی درون کانال[70] 45
شکل ‏4‑1 انتخاب معادلات… 52
شکل ‏4‑2 شرایط مرزی در محیط نرم افزار. 53
شکل ‏4‑3 شماره گذاری مرزها 54
شکل ‏4‑4 تعریف ضریب نفوذ و معادله سرعت در سمت الیاف… 55
شکل ‏4‑5 تعریف ضریب نفوذ غشاء. 55
شکل ‏4‑6 تعریف ضریب نفوذ و معادله سرعت در سمت پوسته. 56
شکل ‏4‑7 مش بهینه. 57
شکل ‏4‑8 بررسی تغییرات غلظت فنل خروجی از الیاف با تعداد المان های مش…. 57
شکل ‏4‑9 تعیین طول گام و زمان فرایند. 58
شکل ‏5‑1 توزیع غلظت درون الیاف در زمان 25 ساعت… 60
شکل ‏5‑2 توزیع غلظت درون پوسته در زمان 25 ساعت… 61
شکل ‏5‑3 توزیع سرعت درون الیاف… 62
شکل ‏5‑4 توزیع سرعت درون پوسته. 63
شکل ‏5‑5 تأثیر غلظت اولیه فنل بر بازدهی حذف فنل.. 65
‏5‑6  تأثیر دبی فاز سلولی بر بازدهی حذف فنل.. 66
شکل ‏5‑7 اثر افزایش شعاع خارجی غشاء بر بازدهی حذف… 66
شکل ‏5‑8 اثر شعاع داخلی غشاء بر بازدهی حذف فنل.. 67
 
 
فهرست جداول
جدول ‏1‑1  میزان فنل در پساب صنایع مختلف [4] 15
جدول ‏1‑2 مشخصات فیزیکی و شیمیایی فنل[9] 16
جدول ‏1‑3 مزایا و معایب روش های حذف… 30
 
چکیده
تاکنون روش های زیادی برای حذف فنل از پساب ارائه شده که از بین آنها، فرایند بیوراکتور غشایی در یک دهه اخیر مورد توجه قرار گرفته است. استفاده از تماس دهنده غشاء الیاف توخالی در این فرایند، برای جلوگیری از تماس مستقیم دو فاز و افزایش نسبت سطح به حجم است. در پروژه حاضر به مدل سازی و شبیه سازی حذف فنل از پساب با بکارگیری این تماس دهنده پرداخته شده است. همچنین اثر پارامترهایی همچون دبی فازها، غلظت اولیه، طول غشاء و شعاع داخلی و خارجی غشاء بر بازدهی حذف فنل از پساب مورد بررسی قرار گرفته است.
دستگاه معادلات دیفرانسیل پاره ای ارائه شده در مدل همراه با شرایط مرزی آن بوسیله ی شبیه سازی توسط نرم افزار COMSOL، به روش المان محدود حل شده اند. نتایج حاصل از شبیه سازی با داده های تجربی موجود مقایسه گردیده و انطباق نسبتا مناسبی مشاهده شده است. با افزایش غلظت اولیه، بازدهی حذف فنل کاهش‌ می یابد. افزایش دبی فاز سلولی، بازدهی حذف فنل را اندکی افزایش می دهد. همچنین افزایش طول غشاء تا حدودی سبب بهبود بازدهی حذف می شود. با افزایش تعداد الیاف غشاء درون تماس دهنده بازدهی ابتدا افزایش و سپس کاهش می یابد.
 
واژه های کلیدی: بیوراکتور غشایی، تماس دهنده غشایی الیاف توخالی، مدل سازی، شبیه سازی، فنل
 
پیش گفتار
با افزایش جمعیت و گسترش روزافزون کارخانجات صنعتی، میزان مصرف آب در سطح جهان افزایش یافته است. با توجه به کمبود آب آشامیدنی در دسترس، یکی از راه های تامین آب، استفاده مجدد از آب های سطحی و پساب ها است. اما به علت وجود مواد آلاینده و سمی در پساب ها، نمی توان از آن ها بطور مستقیم استفاده کرد. فنل یکی از آلاینده های بسیار خطرناک است که در پساب خروجی صنایع مختلفی از جمله پالایشگاه های نفت و  کارخانجات پتروشیمی، رزین و پلاستیک، پارچه و کاغذ وجود دارد. روش های زیادی برای حذف فنل ارائه شده است اما بسته به غلظت و میزان آن، از هر کدام از روش ها در جای خود استفاده می شود.
بیوراکتورغشایی، روشی جدید برای حذف فنل از پساب ها به شمار می آید. در این فرایند از تماس دهنده غشایی الیاف توخالی برای جلوگیری از ممانعت کنندگی فنل، تماس مستقیم دو فاز، تولید کف و طغیان  و تشکیل امولسیون استفاده می شود. همچنین تماس دهنده های غشایی الیاف توخالی به علت فشردگی و نسبت سطح به حجم بالایی که دارند، می توانند ضمن ارائه کارایی مناسب، صرفه جویی قابل توجهی در وزن دستگاه ها و همچنین فضای موردنیاز ایجاد کنند. این روش در مواردی که نسبت حلال به خوراک خیلی بالا یا خیلی پایین باشد مفید است. در حقیقت در بیوراکتورغشایی، مزایای بیوراکتور و فناوری غشایی با یکدیگر ترکیب شده اند.
با در نظر گرفتن ویژگی های فرایند بیوراکتورغشایی در مقایسه با سایر روش ها جداسازی، در پروژه حاضر به مدل سازی و شبیه سازی حذف فنل از پساب توسط بیوراکتورغشایی پرداخته می شود، تا شناخت بهتری از عملکرد آن حاصل گردد.
در فصل اول از پروژه حاضر، ابتدا کلیاتی راجع به فنل و مضرات آن، روش های حذف و جداسازی آن، مزایا و معایب هر یک از آن ها و سینتیک واکنش های بیولوژیکی اشاره می شود.
در فصل دوم ابتدا فرایند بیوراکتورغشایی به اختصار معرفی می شود و در ادامه به بررسی پژوهش های انجام شده در زمینه حذف فنل از پساب توسط بیوراکتور و نتایج آن ها پرداخته می شود.
در فصل سوم، مدل سازی فرایند و معادلات حاکم بر هر سه قسمت درون الیاف، غشاء و پوسته و همچنین تانک ها، به همراه شرایط مرزی مناسب آن ها ارائه می شود.
در فصل چهارم، ابتدا نرم افزار COMSOL معرفی شده و سپس مراحل انجام شبیه سازی و پیاده سازی معادلات حاکم بر فرایند به همراه شرایط مرزی آن ها در نرم افزار، گام به گام توضیح داده می شود.
در فصل پنجم، نتایج حاصل از شبیه سازی با داده های تجربی حاصل از آزمایشات مقایسه می گردد. همچنین در انتهای فصل، اثر تغییر پارامترهای مختلف بر بازدهی حذف فنل بررسی می گردد.
در فصل ششم نیز جمع بندی از نتایج انجام شده و پیشنهادهایی برای مطالعات آینده ارائه می گردد.
 
فصل اول
حذف فنل از پساب
 
1-1       مقدمه
کمبود میزان آب آشامیدنی در دسترس و افزایش روزافزون گازهای گلخانه‌ای در جو زمین، سبب شده تا دانشمندان و پژوهشگران به دنبال راه‌حلی اساسی برای رفع این مشکل باشند؛ زیرا این گازها موجب افزایش دمای سطح زمین و به‌تبع آن، آب شدن یخچال‌های طبیعی و تبخیر آب‌های سطحی خواهند شد.
با توجه به کمبود آب آشامیدنی، محققان در تلاش هستند که برای آبیاری زمین‌های کشاورزی یا در کارخانه‌های صنعتی از پساب های موجود استفاده کنند. اما نمی‌توان از فاضلاب‌ها به‌طور مستقیم استفاده کرد زیرا برخی از آن‌ ها حاوی مواد سمی، خطرناک و مضر برای سلامتی انسان ها و محیط زیست هستند. همچنین بعضی از پساب‌ها را نمی‌توان مستقیماً دفن و یا وارد محیط‌زیست کرد، خصوصاً پساب‌ مربوط به بیمارستان‌ها، کارخانه‌های مواد شیمیایی و تسلیحات نظامی و شیمیایی زیرا میزان آلاینده‌های موجود در این پساب بسیار بالاست. با این تفاسیر قبل از استفاده، بایستی تصفیه بر روی آن ها انجام شود و مواد آلاینده، میکروب‌ها و مواد مضر آن ها از بین برود. اما بسته به نوع و کیفیت پساب، روش‌های مختلفی ارائه‌شده است که در این فصل به برخی از آن ها اشاره خواهد شد.
 

1-2       شناسایی آلاینده فنلی

فنل و ترکیبات فنلی جزء مواد آلی بسیار پایدار بوده و از آلاینده‌های متداول منابع آبی می‌باشند. این ترکیبات بطور طبیعی از قطران زغال‌سنگ و تقطیر بنزین و به‌صورت مصنوعی در اثر حرارت دادن سولفات بنزن سدیمی با سود آبدار در فشار بالا تولید می‌شوند[]. به‌طورمعمول، سالانه حدود 6 میلیون تن فنل در سراسر جهان تولید می‌شود[2]. فنل و مشتقاتش در فاضلاب‌های صنایع مختلفی از قبیل پالایشگاه‌های نفت، کوره‌های زغال‌سنگ، کک سازی‌ها، کارخانه‌های پتروشیمی[2]، رزین و پلاستیک، کارخانه‌های پارچه و چرم، کاغذ و خمیرکاغذ، فرایندهای ریخته‌گری و کارخانه‌های بازیافت کائوچو حضور داشته و عمدتاً از طریق تخلیه فاضلاب‌های این صنایع وارد محیط می‌شوند[3].
 
میزان فنل در پساب‌ صنایع مختلف، در جدول ‏1‑1 گزارش‌شده است.
جدول ‏1‑1  میزان فنل در پساب صنایع مختلف [4]

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
موضوعات: بدون موضوع  لینک ثابت
 [ 06:33:00 ب.ظ ]




خواص ضدباکتریایی وآنتی اکسیدانی

بخش اول: کلیات گیاه­شناسی

 

 
 
  مقدمه

 

1-1- تیره آرالیاسه

 

4 1-1-1-مشخصات جنس هدرا

 

5 1-1-1-1- هدرا پاستوچووی

 

7 1-1-2- تیره نخود

 

9 1-1-2-1مشخصات جنس لیلکی

 

10 1-1-3 شیمی جنس  عشقه

 

12 1-1-4شیمی جنس لیلکی

 

13 بخش دوم: روغن­های اسانسی و اثرات دارویی

 

2-2- روغنهای اسانسی

 

15 1-2-1- تعریف

 

15 1-2-2 شیمی روغن های اسانسی

 

17 1-2-3 روش های تهیه و استخراج روغن های اسانسی

 

18 1-2-3-1 روش های تقطیر

 

18 1-2-3-1-1- تقطیر با آب

 

19 1-2-3-1-2- تقطیر با بخار مستقیم

 

19 1-2-3-1-3- تقطیر با آب و بخار آب

 

20 1-2-3-2- استخراج توسط حلال

 

21 1-2-3-3- استخراج به کمک فشار

 

21 1-2-3-4- استخراج با چربی سرد

 

21 1-2-3-5- استخراج با چربی داغ

 

22 1-2-3-6- استخراج به کمک گازها
 

 

22 عنوان

 

صفحه

 

1-2-4- طبقه بندی اسانس ها

 

23 1-2-4-1- اسانس های طبیعی

 

23 1-2-4-2- اسانس های شبه طبیعی

 

23 1-2-4-3- اسانس های مصنوعی

 

24 1-2-5- کاربرد روغن های اسانسی

 

24 1-2-6- اثرات دارویی اسانس ها

 

25 1-2-6-1- اثرات گوارشی

 

25 1-2-6-2- اثرات قلبی و عروقی

 

25 1-2-6-3- اثرات تنفسی

 

25 1-2-6-3- اثر کاهش قند خون

 

26 1-2-6-4- اثرات ضد میکروبی و ضد قارچی

 

26 1-2-6-5- اثرات پوستی

 

26 1-3- عصاره گیری

 

27 1-3-1- استخراج مواد متشکله دارویی

 

27 1-3-2- روش های عصاره گیری (استخراج)

 

28 1-3-2-1- روش خیساندن

 

28 1-3-2-2- پرکولاسیون

 

28 1-3-2-3- هضم

 

29 1-3-2-4- روش دم کردن

 

29 1-3-2-5- روش سوکسله

 

29 بخش سوم: شیمی ترپنوییدها

 

1-3-1 شیمی ترپنوییدها

 

31 1-3-2 طبقه بندی ترپنوییدها

 

32 1-3-2-1 همی ترپنوییدها

 

32 1-3-2-2مونو ترپنوییدها

 

32 1-3-2-3  سزکویی ترپنوییدها

 

34 1-3-2-4 دی ترپنوییدها

 

36 1-3-2-5 سستر ترپنوییدها

 

37 عنوان    

 

صفحه
  1-3-2-6 تریترپنوییدها

 

37 1-3-2-7 تترا ترپنوییدها

 

38

 

1-3-2-8 پلی ترپنوییدها

 

38

 

 

 

 

 

بخش چهارم: اثرات آنتی باکتریال وآنتی اکسیدانت
1-4-آنتی اکسیدان ها                                                                                                      40
1-4-1-تعریف علمی                                                                                                      40
1-4-1-1- ویژگی های آنتی اکسیدان ها                                                                             40
1-4-1-2-  دامنه فعالیت آنتی اکسیدان ها                                                                            42
1-4-1-3- ویژگی های آنتی اکسیدان های سنتزی                                                                 43
1-5- آنتی باکتریال ها                                                                                                     44
1-5-1-  بررسی اثرات ضد میکروبی عصاره                                                                         44
1-5-1-1 شرح مختصری درباره میکرو ارگانیسم های مورد آزمایش45
1-5-1-1-1 استافیلوکوکوس اورئوس                                                                               45
1-5-1-1-2 باسیلوس سوبتیلیس                                                                                     45
1-5-1-1-3 اشریشیاکلی                                                                                                46
1-5-1-1-4- پسودوموناس آئروژینوزا                                                                              46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل دوم: بخش تجربی    
2-1- اسانس گیری 49  
2-1-1- مواد و وسایل 49  
2-1-1-1-گیاهان مورد استفاده 49  

2-1-1-2- دستگاه­های مورد استفاده

مقالات و پایان نامه ارشد

 

49  
2-1-2-روش کار 50  
2-1-2-1- استخراج اسانس 50  
2-1-2-2- جدا سازی و شناسایی مواد تشکیل دهنده روغن اسانسی گیاه 52  
2-2-عصاره گیری 54  
2-2-1- مواد و وسایل 54  
2-2-1-1-گیاه مورد استفاده 54  
2-2-1-2- مواد مورد استفاده 54  
عنوان
 
صفحه  
2-2-1-3- دستگاه مورد استفاده 54  
2-2-2- بررسی شیمیایی گیاه عشقه 54  
2-2-3- جداسازی مواد تشکیل دهنده ی عصاره 55  
2-3- بررسی اثرات آنتی باکتریال 55  
2-3-1- مواد و وسایل 55  
2-3-1-1 گیاه مورد استفاده 55  
2-3-2-1- مواد مورد نیاز 55  
2-3-2-2- وسایل مورد نیاز 55  
2-3-2- روش کار 56  
2-3-2-1- تهیه ی محیط کشت LB 56  
2-3-2-2- باکتری ها و نحوه آماده سازی کشت باکتریایی در LB 56  
2-3-2-3- بررسی فعالیت ضد باکتریایی عصاره گیاهی به روش حداقل غلظت بازدارندگی رشد باکتری ها  
57
 
2-4- بررسی فعالیت آنتی اکسیدانی عصاره 58  
2-4-1- مواد و وسایل 58  
2-4-1-1- گیاه مورد استفاده 58  
2-4-1-2- مواد مورد نیاز 58  
2-4-1-3- وسایل مورد نیاز 58  
2-4-2- اصول کار روش DPPH 59  
2-4-2-1- ارزیابی میزان توانایی به دام اندازی رادیکال DPPH 60  
2-4-3- ارزیابی محتوای فنولی 60  
2-4-3-1- تعیین محتوای کلی فنولی 61  
2-4-4- ارزیابی محتوای فلاونوییدها 62  
2-4-4-1 تعیین محتوای کلی فلاونوییدی 63  
فصل سوم: بحث و نتیجه گیری    
3-1- نتایج آزمایشگاهی 65  
3-1-1- آنالیز و شناسایی کمی و کیفی اجزای موجود در اسانس 66  
3-2- بررسی ترکیبات شناسایی شده از اسانس گیاهان 78  
عنوان     صفحه
 
 
3-5 – نتایج بررسی فعالیت آنتی اکسیدانت عصاره گیاهان مورد بررسی 97  
3-5-1- داده های روش DPPH 97  
3-5-2- داده های روش فنولی 102  
3-5-3- داده های روش فلاونوییدی 103  
3-7- نتیجه گیری 105  
3-7- پیشنهاداتی برای کارهای آینده 106  
3-8 منابع 107
 
 
 
 
 
 
فهرست شکل­ها  
 
عنوان صفحه
فصل اول بخش اول  
شکل 1-1گیاه عشقه 9
شکل 1-2 گیاهلیلکی 12
شکل 1-2-1 دستگاه تقطیر با بخار مستقیم 21  
شکل 1-2-2 دستگاه استخراج روغن اسانسی به کمک گاز دی اکسید کربن 24
فصل دوم: بخش تجربی  
شکل 2-1 نمایی از دستگاه اسانس گیر (کلونجر) 51
شکل 2-2 نمایی از لوله های حاوی محیط کشت مایع LB 57
فصل سوم: بحث و نتیجه گیری  
شکل 3-1- نمودار ترکیبات تشکیل دهنده روغن­های­ اسانسی برگ، ساقه ومیوه گیاه عشقه 75
شکل 3-2- نمودار ترکیبات تشکیل دهنده روغن­های اسانسیمیوه گیاه لیلکی 77
شکل 3-3نمودار فعالیت آنتی اکسیدان عصاره اتیل استات گیاه عشقه به روش DPPH 98
شکل 3-4- نمودار فعالیت آنتی اکسیدان عصاره متانولی گیاه عشقه به روش DPPH 99
شکل 3-5- نمودار فعالیت آنتی اکسیدان عصاره استونی گیاه عشقه به روش DPPH 100
شکل 3-6- نمودار فعالیت آنتی اکسیدان عصاره اتانولی گیاه عشقه به روش DPPH 101
 
   

 
فهرست شماها
 

 

 

 

 

عنوان صفحه
شمای 1-3-1 مسیر بیوسنتز  مونوترپنوییدها 34
شمای 1-3-2 مسیر بیوسنتز سزکویی ترپن ها 36
شمای 1-3- 3  مسیر سنتز  ژرانیل پیرو فسفات 37
 

 
 
 
فهرست جدول­ها
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

عنوان   صفحه   
فصل اول- بخش اول  
جدول 1-1-جنسهای مهم خانواده آرالیاسه 5
جدول1-1-2- گونه های جنس هدرا 7
فصل اول-بخش سوم  
جدول1-3-1- طبقه ­بندی ترپنوییدها بر اساس تعداد واحد ایزوپرنی 33
فصل دوم  
جدول 2-1- گیاهان مورد بررسی 49
جدول 2-2- مقدار و اندام گیاهان مورد بررسی 50
جدول 2-3- زمان هایبازداری آلکان های نرمال بر روی ستونHP-5 MS 53
فصل سوم: بحث و نتیجه گیری  
جدول 3-1درصد اسانس و روش استخراج 65
جدول 3-2- ترکیبات تشکیل دهنده روغن­های اسانسی برگ، ساقه و میوه گیاه  عشقه 71
جدول 3-3- ترکیبات تشکیل دهنده روغن­های اسانسی میوه لیلکی 76
جدول3-4- تاثیر غلظت مختلف عصاره اتانولی گیاه عشقه بررشد باکتری‌ها بهکمک روش حداقل غلظت مهار کنندگی  
 
96
جدول3-5- فعالیت آنتی اکسیدانیاتیل استات برگ و میوه گیاه عشقه با روش DPPH 97
جدول3-6- فعالیت آنتی اکسیدانی متانولی برگ و میوه گیاه عشقهبا روش DPPH 99
جدول3-7- فعالیت آنتی اکسیدانی استونی برگ و میوه گیاه عشقه با روش DPPH 100
جدول3-8- فعالیت آنتی اکسیدانی اتانولی برگ و میوه گیاهعشقهبا روش DPPH
جدول 3-9-درصد ترکیبات فنولی
101
103
جدول 3-10-درصد ترکیبات فلاونوییدی 101
   

 
فهرست طیف­ها

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل سوم: بحث و نتیجه گیری  
طیف 3-1- کروماتوگرام گازی اسانس برگ عشقه 67
طیف­ 3-2- کروماتوگرام گازی اسانس ساقه عشقه 68
طیف­ 3-3- کروماتوگرام گازی اسانس میوهعشقه 69
طیف­ 3-4- کروماتوگرام گازی اسانس میوه لیلکی 70
طیف 3-5- طیف جرمی نمونه جداسازی شده 4,2 نونادینال 79
طیف 3-6- طیف جرمی استاندارد 4,2 نونادینال 79
طیف 3-7- طیف جرمی نمونه جداسازی شده آلفا- پینن 81
طیف 3-8- طیف جرمی استاندارد آلفا- پینن 81
طیف 3-9- طیف جرمی نمونه جداسازی شده لیمونن 83
طیف 3-10- طیف جرمی استاندارد لیمونن 83
طیف 3-11- طیف جرمی نمونه جداسازی شده ترانس بتا فارنسن 85
طیف 3-12- طیف جرمی استاندارد ترانس بتا فارنسن 85
طیف 3-13- طیف جرمی نمونه جداسازی شده  تیمول 87
طیف 3-14- طیف جرمی استاندارد تیمول 87
طیف 3-15- طیف جرمی نمونه جداسازی شده بتا بیسابولن 89
طیف 3-16- طیف جرمی استاندارد بتا بیسابولن 89
طیف 3-17- طیف جرمی نمونه جداسازی شده لیینولئیک اسید 91
طیف 3-18- طیف جرمی استاندارد لیینولئیک اسید 91
طیف 3-92- طیف جرمی نمونه جداسازی شده پالمتیک اسید 93
طیف 3-20- طیف جرمی استاندارد پالمتیک اسید 93

 
 
لیست علایم و اختصارات
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nanometer nm
Part per million ppm
Wave number Cm -1
Nuclear magnetic resonance NMR
Hydrazyl1,1-diphenyl-2-picryl DPPH
Minimum  Bacteria  concentration MBC
Minimum  Inhibitory  Concentration MIC
Luria – Betani medium LB
Ultraviolet Uv
Visible Vis
Propyl Gallate PG
Butylatedhydroxyanisole BHA
Butylatedhydroxytoluene BHT

 
 
 
چکیده:
ترکیبات شیمیایی روغن­های اسانسی استخراج شده به روش تقطیر با آب ازبرگ، ساقه و میوه گیاه عشقه (هدرا پاستوچووی) و میوه گیاه لیلکی با دستگاه GC/MS شناسایی شدند. ترکیبات عمده در روغن­های اسانسی گیاه عشقه  شامل: 4,2 نونادینال (42/16- 6/2 %)، آلفا- پینن (33/0- 25/2 (،بتا فارنسن( 97/6 -35/11 )، آلفا-كدرن (65/0-34/5 ) و گیاه لیلكی شامل پالمیتیک اسید (3/39%) لینولییک اسید (2/5%) اوكتا دكانوییک اسید (3/3%) می­باشند. همچنین فعالیت ضد باکتریایی عصاره اتانولی روغن­های اسانسی برگ، ساقه و میوه  گیاه عشقه با روش MIC بررسی شدند كه عصاره های این گیاه اثرات و ضد باکتریایی مطلوبی از خود نشان دادند. فعالیت آنتی اکسیدانی عصاره گیاه عشقه با روش های DPPH، فنولی و فلاونوییدی اندازه ­گیری شده است و سپس با فعالیت آنتی­اکسیدانی ویتامین) C آنتی­اکسیدان طبیعی) و  BHT (آنتی اکسیدان سنتزی) مقایسه شدند. با توجه به بررسی های انجام شده بر روی فعالیت آنتی اکسیدانی، عصاره گیاه عشقه فعالیت آنتی اکسیدانی بالایی نشان داده و این بی شک با ترکیبات مهم و مفید موجود در این گیاه مرتبط است.
 
 
مقدمه :                        
« و سپس از میوه های شیرین تغذیه کنید و راه پروردگارتان را به  اطاعت بپویید، آنگاه از درون آن میوه ها شربت شیرینی به رنگ های مختلف بیرون آید که در آن شفاء مردمانست. در این کار نیز قدرت خدا بر متفکران پیداست.» ( نحل، 69 )
دنیای کنونی با تمام تلاش هایش برای تامین رفاه و آسایش بشر تنها یک روی سکه ای است که روی دیگرآن می کوشد تا صدمات ناشی از این تلاش را جبران کند. در این بین ظهور بیماری های ناشناخته یکی از مشکلات اساسی است، به گونه ای که توجه به تغذیه و سلامت جسم و روان بیش از پیش مورد توجه قرار گرفته است و انسان برای مقابله با مشکلات جسم و روان به تولید داروهای سنتزی روی آورده است.
اسانس ها به دلیل معطر بودن و داشتن طعم های مشخص و مختلف در صنایع غذایی، عطر سازی و لوازم آرایشی، داروسازی و به طور كلی در صنایعی كه محصولات معطر و یا دارای طعم خاص تولید می كنند مورد استفاده قرار می گیرند. علاوه بر این در فراورده های دارویی مختلف مانند شربت، كرم، پمادو لوسیون به كار می روند. یكی از اشكال مصرف عمده این ترکیبات به صورت بخور می باشد. لازمه استفاده هر چه بهتر از این ترکیبات، شناخت مواد متشکله آنها می­باشد و با توجه به این نکته که بسیاری از گونه­ ها­ی گیاهی موجود در ایران حاوی روغن­های اسانسی هستند، لزوم مطالعه در این زمینه به خوبی حس می­ شود. لذا در این پایان نامه اسانس و عصاره تعدادی از گونه­ های گیاهی بومی ایران مورد بررسی شیمیایی قرار گرفته تا با آگاهی کامل از ترکیبات موجود در این گیاهان بتوان از خواص مختلف آنها در زمینه ­های گوناگون به­ طور کامل و صحیح استفاده کرد.   گیاهان دارویی در ایران پیشینه ای بسیار طولانی دارند. پزشکی و درمان در ایران به دوران آریایی حدود 7000 سال قبل از میلاد مسیح بر می گردد. نخستین پزشک آریایی تریتا[1] یا آترت[2]   نام داشت که از دیدگاه زرتشت و اهورا مزدا شخصی بود پرهیزکار، دانا و توانا که برای نخستین بار تب و زخم نیزه را درمان کرد. در تمدن آریایی تاکید زیادی بر حفظ و بقای گیاهان شده است، در این تمدن دوگیاه « مورد و انار» مقدس بودند و همواره در بین مردم از ارزش والایی برخوردار بودند. همچنین، در تمدن ایران باستان در کتیبه های مربوط به هخامنشیان، از زعفران به عنوان گیاهی دارویی با خواص و کاربرد بسیار فراوان یاد شده است.
تیره آرالیاسه 1
تیره آرالیاسه شامل گیاهانی پراکنده در مناطق استوایی و بین استوایی به ویزه هند، مالزی و نواحی گرم آمریکاست. فقط بعضی از انواع زیستی و محدودی از گونه های دیگر آن در سایر نواحی به غیر از آنچه ذکر شد، پراکندگی دارند. این تیره شامل 65 جنس و 800 گونه است ]1[.
این گیاهان به صورت درختچه های راست یا بالا رونده و به ندرت علفی می باشند، برگ هایی با پهنک بزرگ، ساده یا مرکب از برگچه ها دارند. گل های آنها کوچک به رنگ سفید یا زرد منظم، نر  ماده یا منحصراً دارای یکی از اجزای گل، بندرت دو پایه و مجتمع به صورت چتر یا سنبله است. اجزای گل آنها معمولاً 5 تایی است ولی در بین آنها نمونه های فاقد گل و یا دارای گلبرگ های بیشتر یا کمتر از 5 قطعه نیز دیده می شود. مادگی آنها شامل تخمدان تحتانی یا فوقانی مرکب از 1 تا 5 خانه محتوی یک تخمک در هر خانه است. میوه آنها به اشکال مختلف سته یا شفت یا مرکب از قطعات جدا شده است ]2[.
از جنس های مهم این تیره می توان از گونه های زیر نام برد.
جنس های مهم خانواده آرالیاسه

 

 

 

40 گونه Aralia
5 یا 6 گونه Hedera
150 گونه Schefflera

 1-1-1 مشخصات جنس هدرا
 

 

 

 

 

 

 

 

 

H. Colchia H . Canariensis H . algeeriensis
H . cypria H . iberica H . maderenisis
H . hibernica H . pastuchovii H . helix
H . maroccana H . rhombea H . nepalensis

هدرا  که در فارسی به داردُوست، ولگ، پاپیتال و پیچیک معروف است، درختچه ای پیچنده و بلند از تیره ی آرالیاسه است ]3[. انواع مختلف هدرا دارای برگهایی بزرگ یا كوچك با بریدگی هایی در حاشیه هستند كه پس از بلوغ تغییر شكل داده، فاقد لب، تیره رنگ تر و ضخیم تر می گردند، هم چنین جوانه های گیاه نیز سخت تر می شوند. رنگ برگها از سبز تیره تا سبزمایل به خاكستری و یا برگهای ابلق «سبز و زرد» بسته به گونه های گیاه تغییر می كند. به طور كلی نسبت به شرایط محیطی دارای قدرت سازگاری بالایی می باشد و در حرارت بالا و پایین و روشنایی كم و زیاد می تواند رشد كند. آن دسته از این گیاه كه برگ های ابلق دارند، نسبت به سرما و خسارات ناشی از باد دارای تحمل بیشتری  می باشند. انواع ضعیف این گیاه  را می توان در گلخانه ومحیط های بسته پرورش داد. این گیاه پوششی تا هنگامیكه در كنار یک مانع عمودی قرار نگیرد بالا نمی رود. اگر مانع عمودی یک درخت باشد بهتر است از بالاروی هدرا جلوگیری نمود و یا اینكه به صورت كنترل شده آن را هدایت كرد، زیرا تجمع آن روی تنه درخت سبب خشك شدن درخت می گردد ]4[. رشد این گیاه در ابتدا كند می باشد، در عین حال انواع ابلق آن نسبت به سبز رشد كمتری دارند. اوایل تا اواسط پاییز زمان گلدهی هدرا می باشد. گلهای آن به رنگ سبز مایل به زرد و نیمه كروی با بویی مشابه بوی عسل می باشند. میوه ی آن سیاه رنگ به قطر 6 – 10 میلی متر و درون آن به تعداد متنوع دانه وجود دارد. میوه ی داردوست دارای اثر مسهل و کمی سمی است ]5[. در مناطق گرم نواحی مدیترانه ای از ساقه ی مسن این گیاه، به خودی خود با ایجاد شکاف، رزین مخصوصی خارج می شود که در طب سنتی با نام صمغ هدرا با کاربرد قاعده آور مصرف می شود. در بافت های این گیاه، گلیکوزیدی به نام هِدِرین[3] موجود است که اثر قی آور و مسهل دارد. دم کرده ی برگ و همچنین صمغ آن که لادن نامیده می شود نیز قاعده آور است ]6[. مصرف عشقه سبب افزایش میزان توانایی، قوت و شادابی می شود. این ویزگی ها سبب می شود این گیاه همانند قهوه نقش یک محرک را بازی کند. اما این داروی محرک اغلب کنش بخش های اصلی بدن را سامان می بخشد و زودرنجی، طپش قلب، اعتیاد و نگرانی در زمره پاره ای از عوارض جانبی ناشی از مصرف این گیاه است. از طرف
1-1-2  گونه های جنس هدرادیگر عشقه هیچ گونه عارضه منفی از خود برجای نمی گذارد و در طول حداقل 2000 سال گذشته از آن استفاده شده است. عشقه در جنگل های شمال به مصرف خوراک دام می رسد و در باغ ها برای تزیین کاشته می شود ]7[. انواع گونه های این گیاه عبارتند از ]8[ :
 
1-1-1-1- هدرا پاستوچووی[4] (عشقه)
  گونه ی عشقه گیاهی همیشه سبز و بالارونده با  ارتفاع بیش از 25 سانتی متر است که در فضای سبز منزل و بیرون به عنوان پوشاننده تنه لخت درختان مورد استفاده قرار می گیرد و گروهی در گلدان و گروهی پوشاننده خاک هستند. این گیاه سریع الرشد بوده و شکل برگ ها در انواع مختلف آن متفاوت است و  هوای گرم و خشک را دوست ندارد، شکل1-1
منشاء : یک گیاه باستانی که در قسمت های شمالی می زیسته است.
نور : نور کامل اما غیر مستقیم لازم است ، نوع دو رنگ آن به نور بیشتری نیاز دارد. نور زیاد باعث سفیدی و کمرنگ شدن گیاه می شود.
برگ ها : متناوب، ساقه بلند و سفت
گل ها : کوچک یا نا پیدا، چتری و دوجنسی
فصل گل : بر حسب شرایط متفاوت است، ولی در داخل آپارتمان هیچ وقت گل نمی دهند.
موقعیت : در همه جا می توان از این گیاه استفاده نمودبه ویژه در هوای آزاد و نور کافی.
تکثیر : بوسیله تقسیم توسط قلمه صورت می گیرد ]9[.
شکل 1-1 گیاه عشقه

موضوعات: بدون موضوع  لینک ثابت
 [ 06:32:00 ب.ظ ]




3-1- ساختمان DNA                                                                                         12
1-3-1- DNA معمولاً به صورت مارپیچ مضاعف است                                             12
2-3-1- – توالی بازهای دو زنجیره DNA مكمل یكدیگر است                                       13
3-3-1- کار DNAدر سلول‌ها                                                                              14
4-3-1- حالتهای DNA در شرایط متفاوت   20
4-1-همانندسازی DNA                                                                                      26
5-1-متیلاسیون DNA                                                                                        27
1-5-1-نقش متیلاسیون DNAدر وقوع بدخیمی‏های خونی                                           29
6-1-استخراج DNAاز باكتری های گرم منفی                                                           30
7-1-تاثیر حلالهای مختلف بر روی برهمكنشهای DNA                                              31
8-1-حلالپوشی نوكلئوزیدها در مخلوط حلالهای آلی و ارتباط آن با جفت بازهای   DNA     34
9-1-برهمكنش تركیبات آلی قلع با DNA                                                                  36
10-1-برهمكنش یون های فلزی و اسیدهای نوكلئیك                                                    37
11-1-پیوند شدن لیگاند به ماكرومولكول                                                                 38
فصل دوم : مواد وروشها
1-2 –مواد شیمیایی                                                                                             41
2-2 –روش ها                                                                                                   41
3-2 –آزمایشات ویسكوزیته                                                                                    43
فصل سوم : برهمكنش كمپلكس دی فنیل دی كلرید قلع با DNA
1-3 –سنجش پیوندی كمپلكس DNA-SnCl2(Ph)2                                                    45
2-3 –آنالیز جایگاه های پیوندی  SnCl2(Ph)2  در بر هم كنش با DNA                         53
3-3 –بررسی های ویسكوزیته                                                                                54
4-3 –تاثیر نانو ذرات نقره بر پیوند لیگاند با DNA                                                     56
فصل چهارم: برهمكنش كمپلكس دی متیل دی كلرید قلع با F.S DNA
1-4 –سنجش پیوندی كمپلكس F.S DNA -SnCl2(Me)2                                           58
2-4 –آنالیز جایگاه های پیوندی  SnCl2(Me)2   در بر هم كنش با DNA                       64
3-4 –بررسی های ویسكوزیته                                                                                65
هدف از کار                                                                                                       67
پیشنهاد                                                                                                              68

مقالات و پایان نامه ارشد

 

فهرست منابع و مراجع                                                                                        70
 
چكیده :
در این مطالعه برهمكنش تركیب دی فنیل دی كلرید قلع با Calf thymus DNA با بهره گرفتن از نانوذرات نقره و  تركیب دی متیل دی كلرید قلع با Fish sperm DNA در250C و 7= pH   با بهره گرفتن از روش های مختلف شامل طیف سنجی های ماوراءبنفش –مرئی UV-Vis) ) ، و اندازه گیری ویسكوزیته مطالعه شده است .
بررسی جایگاه های پیوندی لیگاند SnCl2(Ph)2 با بهره گرفتن از نمودارهای اسكاچارد و هیل نشان می دهد كه دی فنیل دی كلرید قلع با برهمكنش با جایگاه های بیرونی همانند گروه های فسفات بر هم كنش دارد. بدون حضور نانو ذرات نقره اتصال لیگاند به DNA  امكان پذیر نمی باشد. در بررسی های انجام شده علیرغم نامحلول بودن لیگاند SnCl2(Ph)2 در حلال آب ، اتصال به DNA اتفاق می افتد و در غلظتهای بسیار پایین لیگاند تا حد بالایی این برهمكنش راسبب می شود.
همچنین برای لیگاند  SnCl2(CH3)2 بررسی جایگاه های پیوندی نشان می دهد كه لیگاند دی متیل دی كلرید قلع ابتدا با جایگاه های بیرونی DNA همانند گروه های فسفات برهمكنش دارد و درنهایت شروع به متصل شدن به گروه های بازی می كند.
 
 
فصل اول
مقدمه
 
 
مقدمه
تاریخچه
اصول علم شیمی درمانی، عمدتا در طول سالهای ۱۹۳۵ – ۱۹۱۹ برقرار گردید. ولی فقط از این موقع و بخصوص با ظهور سولفونامیدها و آنتی بیوتیکها بود که استفاده از مواد به عنوان محصولات مفید طبی واقعیت یافت. تنها مواد شیمی درمانی که قبل از زمان پل ارلیش شناخته شده بود، از گنه گنه برای درمان مالاریا، اپیکا برای اسهال آمیبی و جیوه برای درمان علائم سیفلیس تجاوز نمی‌کرد. 30سال اول قرن بیستم، شاهد پیشرفت مواد شیمی درمانی مفیدی بود که در بین آنها، ترکیبات آلی حاوی فلزات سنگین مانند آرسنیک، جیوه و آنتیموان، رنگها و تغییرات چندی در مولکول کینین Quinine) (بود. این مواد، پیشرفتهای فوق‌العاده مفیدی را نشان داد، ولی با این حال زیانهایی در برداشت. ۳۰ سال دیگر از قرن بیستم، شامل دوران بیشترین پیشرفت در زمینه شیمی درمانی است.
برای اولین بار شیمی درمانی بین‌المللی در سال ۱۳۳۴ (ه.ش.) صورت گرفت. در آن زمان، تنها یک داروی ضد سرطان وجود داشت، اما امروزه هزاران داروی جدید و موثر کشف شده‌است
جراحی، اشعه درمانی و شیمی درمانی سه روش اصلی معالجه سرطان هستند. روش ناخوشایند جراحی ، در جلوگیری از انتشار سرطان ناموفق است. اشعه درمانی و شیمی درمانی در معالجه سرطانهایی كه از یک ناحیه به نواحی دیگر بدن گسترش می یابند مانند سرطان خون مؤثرتر عمل می كنند اما دارای عوارض جانبی هستند مثل ریزش مو كم خونی و تهوع.
مطالعات برهمكنش دارو-DNA بسیار گسترده شده است[1-2]. به این دلیل كه بسیاری از داروهای ضد سرطان ، تاثیر خود را با برهمكنش با DNA  سلول نشان می دهند. اغلب این داروها به عنوان عامل جلوگیری كننده از تهیه اسید نوكلئیک ایفای نقش كرده و در برهمكنش با DNA ، آن را از ساختار عادی خود خارج ساخته و باعث برهم خوردن فعالیت طبیعی DNA  می شوند.
یک گروه از داروهای ضد سرطان سیس پلاتین ها هستند كه جزو كمپلكسهای كوئوردیناسیون معدنی می باشند[3-4].
عملكرد سیس پلاتین جلوگیری از نسخه برداری DNA است. این تركیب با حمله به نیتروژن هفتم و اكسیژن ششم گوانین برهمكنش خود را انجام می دهد[5-6]. سیس پلاتین یونهای كلرید خود را در جریان خون بدلیل غلظت بالای یون كلرید حفظ می كند، اما در درون سلول ، با توجه به غلظت پایین یون كلرید با یک واكنش هیدرولیز ، تعادل برقرار می شود. [7]
.
عوارض ناشی از شیمی درمانی
تهوع، استفراغ، سرکوب مغز استخوان، اختلالات خونی، پوستی و متابولیک، عصبی و گوارشی و عفونی، ریزش مو، زخم و عفونت زبان و دهان، تغییرات و قطع عادت ماهانه در زنان، اختلال و کاهش اسپرم در مردان.
 
 
1-1 -داروهای مورد مطالعه در شیمی درمانی
هدف درمان یک بیماری عفونی بدون صدمه زدن به میزبان، تا حدودی بوسیله آنتی بیوتیکی به نام پنی‌سیلین به انجام رسیده‌است. به تدریج ترکیبات متعدد دیگری مانند سولفانامیدها و انواع آنتی بیوتیکها کشف شدند. مواد شیمی درمانی می‌توانند بر حسب بیماریها و عفونتهایی که در درمان آنها مصرف می‌شوند یا بر اساس فرمول شیمیایی و ترکیبات وابسته به هم رده‌بندی گردند.
2-1 –ویژگیهای داروهای درمان نئوپلاسم
الف-آنزیم هدف در سرطان دخیل باشد.
ب-داروهای ضد سرطان برای سلولهای سرطانی حساس به دارو بکار روند.
ج-دارو باید به سلول بدخیم برسد.
د-باید تنها در مرحله سیکل سلولی تجویز شود برای آنکه دارو موثر باشد.
ه-پیش از ایجاد مقاومت دارویی، سلول‌های سرطانی از بین برود. [8]
 
1-2-1- انواع داروهای شیمی درمانی نئوپلاسم
عمده داروهای مورد استفاده در شیمی درمانی می‌تواند در دسته‌ های زیر قرار بگیرد:
-آنتی‌متابولیت‌ها مانند آنتی فولاتها (نظیر متوتروکسات) و آنالوگهای پورین و پیریمیدین
-داروهای هورمونی ضد نئوپلاسم مانند تاموکسیفن و آنتی آندروژنها
-مهارکننده های رونویسی DNA مانند عوامل آلکیلان، نیتروژن موستارد و مهارکننده‌های توپوایزومراز (آنتراسیکلین ها)
-مهارکننده های میتوز مانند وینکریستین
-مهارکننده های آنژیوژنز

موضوعات: بدون موضوع  لینک ثابت
 [ 06:32:00 ب.ظ ]
 
مداحی های محرم