1-1- 1      سنتز و تولید. 3
1-1-2      طبقه بندی.. 4
1-1-3      خواص فیزیکی.. 5
1-1-4      ساختمان بلوری.. 6
1-1-5      کاربردها 7
1-2      نانوذرات کربنی.. 7
1-2-1      الماس.. 7
1-2-2      گرافیت.. 7
1-2-3       فولرین. 8
1-2-4      نانو لوله های کربنی.. 8
1-2-5      خالص سازی نانو لوله ها 10
1-3       معرفی الاستومر های گرما نرم. 10
1-3-1      تعاریف اولیه. 10
1-3-1      تاریخچه الاستومر های گرما نرم. 11
1-3-2      انواع الاستومر های گرما نرم. 13
1-3-3      خواص الاستومر های گرما نرم. 14
1-3-1      مزایا و معایب الاستومر های گرما نرم. 15
1-4      نانوکامپوزیت های پلیمری.. 16
1-4-1      فرایند ساخت.. 18
1-5      اهمیت موضوع و اهداف پروژه 25
فصل دوم: مروری بر مطالعات انجام شده………26
2-1      نانو کامپوزیت پلی اتیلن- اکتن/ نانو لوله های کربنی چند دیواره 26
2-2      نانوکامپوزیت پلی اتیلن/ نانو لوله های کربنی چند دیواره 33
2-3        نانوکامپوزیت پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره 37
2-4      جمع بندی مطالعات.. 43
فصل سوم: تجربی45 .
3-1      مواد. 45
3-2      تهیه نمونه ها 45
3-3      آزمون ها 47
3-3-1      آزمون کشش… 47
3-3-2      آزمون تفرق اشعه ایکس/ زاویه باز. 47
3-3-3      آزمون میکروسکوپ الکترونی روبشی.. 48
3-3-4      آزمون گرماسنجی روبشی تفاضلی.. 48
3-3-5      آزمون میکروسکوپ الکترونی عبوری.. 49
3-3-6      آزمون گرما وزن‌سنجی.. 50
3-3-7      آزمون تحلیل گرمایی مکانیکی.. 50
3-3-8      آزمون رئولوژی.. 50
3-3-9      آزمون ثابت دی الکتریک… 51
3-3-10      آزمون مقاومت الکتریکی سطحی و حجمی.. 51
فصل چهارم: نتایج و بحث ..52
4-1      خواص مکانیکی.. 52
4-2      مورفولوژی.. 66
4-3      تبلور. 71
4-4      رئولوژی.. 76
4-5      خواص حرارتی.. 87
4-6      خواص الکتریکی.. 92
فصل پنجم: نتیجه گیری و پیشنهادات ….    95
مراجع ……. 98
فهرست شکل ها
شکل ‏1‑1: ساختار پلی اتیلن- اکتن. 3
شکل ‏1‑2: شماتیکی از دسته بندی انواع پلی اتیلن ها ]7[. 4
شکل ‏1‑3: رابطه بین چگالی و ترکیب درصد شیمیایی در کوپلیمرهای پلی اتیلن- اکتن ]8[. 5

مقالات و پایان نامه ارشد

 

شکل ‏1‑4: رابطه بین درصد بلورینگی ترکیب درصد شیمیایی در کوپلیمرهای پلی اتیلن- اکتن ]8[. 6
شکل ‏1‑5: نمایی از آرایش اتم کربن در الماس. 7
شکل ‏1‑6: نمایی از آرایش اتم کربن در گرافیت. 8
شکل ‏1‑7: نمایی از آرایش اتم کربن در فولرین. 8
شکل ‏1‑8: آرایش های مختلف کربن برای ساخت نانولوله ها 9
شکل ‏1‑9: آرایش های مختلف کربن برای ساخت نانولوله های کربنی.. 10
شکل ‏1‑10: تغییرات مدول خمشی الاستومر های گرما نرم با دما ]29[. 14

شکل ‏1‑12: فرایند تولید محصول از الاستومر گرما نرم در مقایسه با فرایند تولید برای یک الاستومر گرما سخت ]31[. 16
شکل ‏1‑13: نمایی از ساخت نانو کامپوزیت های پلی کربنات/ نانو لوله های کربنی با بهره گرفتن از روش محلولی]32[. 19
شکل ‏1‑14: تصویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت های پلی کربنات/ نانو لوله های کربنی ]32[. 19
شکل ‏1‑15: تصویر میکروسکوپ انتقال الکترونی مربوط به دسته های نانو لوله های کربنی همراه با یک لایه پلی استایرن جذب شده، مربوط به نانو کامپوزیت پلی استایرن/ نانو لوله های کربنی با میزان 5/8% از نانو لوله های کربنی ]39[. 21
شکل ‏1‑16: نمایی از اتصال پلی متیل متاکریلات روی سطح نانو لوله های کربنی با بهره گرفتن از فرایند پلیمریزاسیون رادیکالی انتقال اتمی ]42[. 22
شکل ‏1‑17: تصویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت های پلی کربنات/ نانو لوله های کربنی. نانو کامپوزیت شامل 20% وزنی از نانو لوله های کربنی ( ). نانو کامپوزیت شامل 15% وزنی از نانو لوله های کربنی ( ) ]45[. 24
شکل ‏1‑18: تصویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت حاوی 5/0% وزنی از نانو لوله های کربنی ]47[. 24
شکل ‏2‑1: طیف مادون قرمز نانو لوله های کربنی چند دیواره خالص(A) و نانو لوله های کربنی چند دیواره اصلاح شده (B)]52[. 27
ز پلی اتیلن- اکتن اصلاح شده با اسید (A) و پلی اتیلن- اکتن اصلاح شده با اسید/ نانو لوله های کربنی چند دیواره اصلاح شده با تیونیل کلراید (5% وزنی) (B) ]52[. 28
شکل ‏2‑3: الگوی تفرق اشعه ایکس مربوط به پلی اتیلن- اکتن خالص (A)، پلی اتیلن- اکتن اصلاح شده/ نانو لوله های کربنی چند دیواره به میزان 5% وزنی (B)، پلی اتیلن- اکتن اصلاح شده/ نانو لوله های کربنی چند دیواره به میزان10% وزنی © و نانو لوله های کربنی چند دیواره عامل دار شده با اسید (D) ]52[. 29
)، نانو کامپوزیت پلی اتیلن-اکتن اصلاح شده با اسید/ نانو لوله های کربنی چند دیواره اصلاح شده به میزان 5% وزنی ( )، نانو کامپوزیت پلی اتیلن- اکتن اصلاح شده با اسید/ نانو لوله های کربنی چند دیواره اصلاح شده به میزان 10% وزنی ( ) و نانو لوله های کربنی چند دیواره ( ) ]52[. 30
شکل ‏2‑5: تصویر میکروسکوپ الکترونی از نانو لوله های کربنی چند دیواره عامل دار شده (A) و سطح شکست کششی نانو کامپوزیت پلی اتیلن اصلاح شده با آکریلیک اسید/ نانو لوله های کربنی چند دیواره به میزان 5% وزنی (B) ]52[. 31
شکل ‏2‑6: استحکام کششی نانو کامپوزیت های پلیمری بر حسب میزان درصد وزنی نانو لوله های کربنی چند دیواره ]52[. 32
شکل ‏2‑7: تصاویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت پلی اتیلن با چگالی بالا/ نانو لوله های کربنی چند دیواره به میزان  5/2% وزنی ]59[. 33
شکل ‏2‑8: تصاویر میکروسکوپ الکترونی از سطح شکست نانو کامپوزیت پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره به میزان  5/2% وزنی ]59[. 34
 
شکل ‏2‑9 گرانروی مختلط ( ) بر حسب فرکانس ( ) ( ) و مدول حقیقی ( ) بر حسب فرکانس ( ) ( ) برای نانو کامپوزیت های پلی اتیلن با چگالی بالا/ نانو لوله های کربنی چند دیواره و پلی اتیلن با چگالی بالا در دمای 200 ]59[. 35
شکل ‏2‑10: نمودار زاویه فازی ( ) بر حسب مقدار مطلق مدول مختلط  برای نانو کامپوزیت های پلی اتیلن با چگالی بالا/ نانو لوله های کربنی چند دیواره ( ) و نانو کامپوزیت های پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ( ) (نمودار ون گارپ – پالمن)] 59[. 36
شکل ‏2‑11: نمودار رسانایی نانو کامپوزیت های پلی اتیلنی بر حسب درصد وزنی نانو لوله های کربنی چند دیواره ]59[. 36
شکل ‏2‑12: تصویر میکروسکوپ الکترونی روبشی نانو کامپوزیت های پلیمری حاوی 0% وزنی (A)، 3/0% وزنی (B)، 5/0% وزنی ©، 1% وزنی (D)،3% وزنی (E)،5% وزنی (F) و10% وزنی (G) از نانو لوله های کربنی چند دیواره ]63[. 38
شکل ‏2‑13: الگوهای تفرق اشعه ی ایکس برای نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره و نانو لوله های کربنی چند دیواره ]63[. 39
اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 40
شکل ‏2‑15: مقاومت سطحی و حجمی نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 41
شکل ‏2‑16: ثابت دی الکتریک و اتلاف دی الکتریک نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره، اندازه گیری شده در فرکانس 5 مگا هرتز و دمای اتاق]63[ .. 42
شکل ‏2‑17: استحکام کششی و کرنش شکست نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 43
شکل ‏2‑18: تاثیر میزان نانو لوله های کربنی بر سرعت جریانی مذاب نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 43
شکل ‏4‑1: منحنی های تنش- کرنش برای پلی اتیلن- اکتن خالص و نانو کامپوزیت ها. 53
شکل ‏4‑2: منحنی های تنش کرنش برای پلی اتیلن- اکتن خالص و نانو کامپوزیت های حاوی 1% وزنی از نانو لوله های کربنی. 53
شکل ‏4‑3: تغییرات مدول الاستیک نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 55
شکل ‏4‑4: تغییرات مقادیر مدول بدست آمده از رابطه هالپین- سای و نتایج تجربی. 56
 بر مدول پیش بینی شده نانو کامپوزیت ها. 57
شکل ‏4‑6: تاثیر ثابت  بر مدول پیش بینی شده نانو کامپوزیت ها. 58
شکل ‏4‑7: مدول پیش بینی شده از رابطه اصلاح شده هالپین- سای و نتایج تجربی. 59
شکل ‏4‑8: تغییرات تنش شکست نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 60
شکل ‏4‑9: تغییرات استحکام کششی بدست آمده از رابطه هالپین- سای و نتایج تجربی. 61
شکل ‏4‑10: تاثیر ثابت  بر استحکام کششی پیش بینی شده نانو کامپوزیت ها. 62
شکل ‏4‑11: تاثیر ثابت  بر استحکام کششی پیش بینی شده نانو کامپوزیت ها. 62
شکل ‏4‑12: استحکام کششی پیش بینی شده از رابطه اصلاح شده هالپین- سای و نتایج تجربی. 63
64
شکل ‏4‑14: تغییرات تنش تسلیم نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 65
شکل ‏4‑15: تغییرات انرژی شکست نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 65
شکل ‏4‑16: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC0.1. 67
شکل ‏4‑17: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC0.5. 67
شکل ‏4‑18 : تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC1. 68
شکل ‏4‑19: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC2. 68
شکل ‏4‑20: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه ETC1. 69
شکل ‏4‑21: تصویر میکروسکوپ الکترونی روبشی مربوط به نانو لوله های کربنی خالص. 70
شکل ‏4‑22: تصویر میکروسکوپ الکترونی عبوری مربوط به نانو کامپوزیت EC1. 70
شکل ‏4‑23: نمودار EDAX نانو لوله های کربنی خالص. 71
شکل ‏4‑24: الگوهای تفرق اشعه ی ایکس برای نانولوله های کربنی، پلی اتیلن- اکتن خالص و نانو کامپوزیت ها. 73
شکل ‏4‑25: منحنی های آزمون گرماسنجی روبشی تفاضلی حاصل از خنک کردن نمونه خالص و نانو کامپوزیت ها. 75
شکل ‏4‑26: منحنی های آزمون گرماسنجی روبشی تفاضلی حاصل از ذوب مجدد نمونه خالص و نانو کامپوزیت ها. 75
شکل ‏4‑27: تغییرات مدول ذخیره بر حسب کرنش برای نمونه خالص و نانو کامپوزیت ها. 77
شکل ‏4‑28: تغییرات مدول ذخیره و اتلاف با زمان برای نمونه خالص و نانو کامپوزیت ها در فرکانس زاویه ای 1. 77
شکل ‏4‑29: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 78
شکل ‏4‑30: مدول ذخیره در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 79
شکل ‏4‑31: مدول اتلافی در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 79
شکل ‏4‑32:    در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 80
شکل ‏4‑33: مدول های دینامیکی بر حسب فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 80
شکل ‏4‑34: طیف زمان آسایش برای نمونه خالص و نانو کامپوزیت ها. 82
شکل ‏4‑35: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EOC. 84
شکل ‏4‑36: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.1. 84
شکل ‏4‑37: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.25. 85
شکل ‏4‑38: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.5. 85
شکل ‏4‑39: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.75. 86
شکل ‏4‑40: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC1. 86
شکل ‏4‑41: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC2. 87
شکل ‏4‑42: نمودار تجزیه وزن سنجی گرمایی نمونه خالص و نانو کامپوزیت ها تحت محیط نیتروژن. 88
شکل ‏4‑43: نمودار تجزیه وزن سنجی گرمایی نمونه خالص و نانو کامپوزیت ها تحت محیط اکسیژن. 90
شکل ‏4‑44: نمودار تجزیه وزن سنجی گرمایی نمونه خالص و نانو کامپوزیت ها تحت محیط اکسیژن و دمای ثابت 420. 91

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...