پایان نامه : روشی انتخابی برای راه رفتن از بغل در روبات انسان نما |
چکیده
امروزه راه رفتن روبات انسان نما یکی از حوزه های جذاب تحقیق در زمینه روباتیک است. چالشهای موجود در کنترل روبات های انسان نما با درجات آزادی بالا، این مساله را در زمره مسائل دشوار در حوزه روباتیک قرار داده است به طوریکه راه رفتن روبات انسان نما را کماکان به عنوان مهمترین توانایی یک روبات طبقه بندی می کنند. در این پایان نامه روشی جدید برای راه رفتن روبات انساننما از بغل مطرح شده است. در این روش بر روی هر یک از مفاصل موثر در راه رفتن روبات یک اتوماتای یادگیر متغیر سوار می شود که طی فرایند یادگیری بردارهای احتمال مربوط به اتوماتاها به روز می شود و مقادیر مناسب مفاصل برای راه رفتن با توجه به این بردارها انتخاب میشوند. در ادامه این روش یادگیری برای راه رفتن مستقیم و راه رفتن از بغل مورد استفاده قرار میگیرد که نتایج حاصل از شبیهسازی الگوریتم بر روی روبات انساننمای نائو در محیط شبیهسازی فوتبال سهبعدی نشان دهنده نتایج مناسب در راه رفتن مستقیم روبات در مقایسه با روشهای گذشته و همچنین مزایای فراوان بهبود توانایی راه رفتن از بغل در یک روبات انساننما میباشد.
واژه های کلیدی
روبوکاپ ، فوتبال ربات ها، روبات های انسان نما، راه رفتن روبات نائو، اتوماتای یادگیر
فهرست مطالب
فصل اول : مقدمه | |
2 | 1-1- مقدمه |
7 | 1-2- روباتهای انساننما |
10 | 1-3- روبوکاپ، انگیزهها و اهداف |
13 | 1-4- نرم افزارهای شبیهسازی و مدل روبات |
13 | 1-4-1- شبیهسازی |
14 | 1-4-2- مدل روبات |
15 | 1-4-3- کد پایه |
18 | 1-5- راه رفتن روبات انساننما از بغل |
19 | 1-6- اهداف |
فصل دوم: بر تحقیقات پیشین و روشهای به کار رفته در تحلیل حرکت روبات | |
21 | 2-1- مقدمه |
22 | 2-2- تعادل روبات ونقطه گشتاور صفر |
25 | 2-3- حرکتشناسی |
27 | 2-3-1- حرکتشناسی مستقیم |
27 | 2-3-2- حرکتشناسی معکوس |
31 | 2-4- استفاده از سریهای فوریه در تحلیل حرکت روبات |
34 | 2-4-1- بهینهسازی پارامترهای سری فوریه به کمک الگوریتم ژنتیک |
37 | 2-4-2- بهینهسازی پارامترهای سری فوریه به کمک الگوریتم ازدحام ذرات |
فصل سوم: طرح پیشنهادی |
|
42 | 3-1- مقدمه |
42 | 3-2- روبات انساننمای نائو و تحلیل حرکت آن |
45 | 3-3- استفاده از حرکتشناسی در راه رفتن از بغل |
46 | 3-3-1- حرکتشناسی مستقیم |
50 | 3-3-2- حرکتشناسی معکوس |
52 | 3-4- استفاده از اتوماتای یادگیر به منظور راه رفتن روبات |
53 | 3-4-1- روباتهای افزونه |
54 | 3-4-2- اتوماتاهای یادگیر |
55 | 3-4-2-1- اتوماتای یادگیر با ساختار ثابت |
58 | 3-4-2-2- اتوماتای یادگیر با ساختار متغیر |
60 | 3-4-3- روش پیشنهادی در راه رفتن روبات نائو |
فصل چهارم: آزمایشها و نتایج | |
70 | 4-1- مقدمه |
71 | 4-2- راه رفتن مستقیم |
74 | 4-3- راه رفتن از بغل |
79 | 4-4 تاثیر تعداد مفاصل مورد استفاده در همگرایی سرعت و تعادل روبات |
فصل پنجم: نتیجه گیری و مطالعات آینده | |
85 | 5-1- جمعبندی |
86 | 5-2- مطالعات آینده |
فهرست منابع |
فهرست جداول
جدول1-1: مشخصات روبات نائو | 15 |
جدول 1-2: محتویات شاخه های موجود در کد پایه | 17 |
جدول 3-1: مشخصات مفاصل روبات نائو | 44 |
جدول 3-2: مقدار دهی اولیه پارامترهای روبات | 51 |
جدول 3-3: محدودیت اعمال شده به سه مفصل اصلی پا | 62 |
جدول 4-1: تیمهای برتر مسابقات جهانی لیگ شبیهسازی فوتبال سهبعدی | 72 |
جدول 4-2: مقایسه سرعت و تعداد زمین خوردن روبات نائو در راه رفتن مستقیم بدست آمده از روش پیشنهادی با سه تیم برتر جهان | 73 |
جدول 4-3: مقایسه سه مجموعه توانایی. مجموعه اول و دوم حرکت روبات با کمک راه رفتن از جلو وچرخش. مجموعه دوم با کمک راه رفتن مستقیم و راه رفتن از بغل | 76 |
جدول 4-4: مقایسه سرعت و تعداد زمین خوردن روبات در راه رفتن از بغل بدست آمده از روش
پیشنهادی با سه تیم برتر جهان |
79 |
فهرست اشکال
شکل 1-1: مثال هایی از روبات های غیر متحرک | 4 |
شکل1- 2: نمونه هایی از روبات های متحرک بر روی زمین | 5 |
شکل 1-3: کاوشگر کنجکاوی، ماموریت اکتشاف در مریخ | 6 |
شکل 1-4: نمونه هایی از روبات های پرنده | 6 |
شکل 1-5: نمونه هایی از روبات های دریایی | 7 |
شکل 1-6: نمونههایی از روباتهای انساننما | 9 |
شکل 1-7: محیط های شبیه سازی فوتبال دوبعدی و سه بعدی | 12 |
شکل 1-8: محیط های شبیه سازی فوتبال دوبعدی و سه بعدی | 12 |
شکل 1-9: ساختار لایه ای کد پایه | 17 |
شکل 2-1: راه رفتن ایستا | 23 |
شکل 2-2: راه رفتن پویا | 24 |
شکل 2-3: بخشهای مختلف روبات صنعتی | 26 |
شکل 2-4: روبات آموزشی Robonova-1 | 29 |
شکل 2-5: مدل ساده شده Robonova-1 | 30 |
شکل 2-6: مسیر حرکتی ثبت شده مفاصل کفل و زانوی انسان | 32 |
شکل 2-7: تحلیل یانگ از مسیرهای متناوب ثبت شده توسط نرمافزارPOLYGON | 33 |
شکل 2-8: شمای کلی الگوریتم ژنتیک | 36 |
شکل 2-9: شمای کلی الگوریتم ازدحام ذرات | 39 |
شکل 3-1: اتوماتای یادگیر کرایلوف | 43 |
شکل 3-2: اتوماتای یادگیر کرینسکی | 47 |
شکل 3-3: اتوماتای یادگیر L2N,2 | 49 |
شکل 3-4: اتوماتای یادگیر L2,2
|
50 |
شکل 3-5: اتوماتای یادگیر در تقابل با محیط | 54 |
شکل 3-6: یک بازوی روباتیک افزونه | 55 |
شکل 3-7: چرخشهای مهم در فضای R3 | 56 |
شکل 3-8: روبات صنعتی اسکارا | 57 |
شکل 3-9: اتصال محورهای مختصات به یک بازوی روباتیک | 57 |
شکل 3-10: مفصلبندی روبات نائو | 58 |
شکل 3-11: الگوریتم پیشنهادی برای یدست آوردن مقادیر مفاصل | 63 |
شکل 4-1: زمان میانگین 30 مرتبه اجرا با هر مجموعه توانایی | 77 |
شکل 4-2: تغییرات سرعت روبات در راه رفتن مستقیم با توجه به تعداد مفاصل انتخابی | 80 |
شکل 4-3: تغییرات سرعت روبات در راه رفتن از بغل با توجه به تعداد مفاصل انتخابی | 81 |
شکل 4-4: تاثیر تعداد مفاصل انتخابی در تعداد دفعات زمین خوردن روبات در راه رفتن مستقیم | 82 |
شکل 4-5: تاثیر تعداد مفاصل انتخابی در تعداد دفعات زمین خوردن روبات در راه رفتن از بغل | 83 |
- مقدمه
امروزه روباتیک[1] به عنوان یکی از رشتههای علوم ومهندسی، مورد توجه بسیاری از موسسههای تحقیقاتی قرار گرفته است و به یکی از حوزه های بسیار جذاب تحقیق و پژوهش بدل گشته است، به نحوی که تحقیقات در زمینه روباتیک در شاخه های مختلفی در حال پیگیری است. در زمینه روباتیک سه رویکرد کلی مورد توجه می باشد که تحقیقات در این سه حوزه گسترده رو به پیشرفت میباشد. در رویکرد اول سعی بر ساخت روباتهای مصنوعی و هوشمند کردن آنها با بهره گرفتن از الگوریتمهای هوش مصنوعی[2] است، که این رویکرد بسیار پرطرفدار خود به شاخه های گوناگونی تقسیم می شود که در ادامه به معرفی برخی از آنها خواهیم پرداخت. رویکرد دوم به استفاده از هوش طبیعی[3] برای کنترل روباتهای مصنوعی می پردازد. روباتهایی که با کنترل دستی هدایت میشوند در این حیطه قرار میگیرند و در نهایت رویکرد آخر استفاده از روباتهای طبیعی[4] و تربیت آنها برای دست یافتن به اهداف از پیش تعیین شده میباشد. تربیت حیوانات برای انجام اعمال خاص، مثالی از رویکرد سوم میباشد.
روباتها را میتوان در تقسیم بندی دیگری از لحاظ کاربرد آنها قرار داد که از این بین میتوان به روباتهای صنعتی[5]، روباتهای خانه دار، روباتهای پزشکی[6]، روباتهای سرویس دهنده، روباتهای نظامی، روبات های سرگرمی و … اشاره کرد.
همچنین روباتها از نظر سامانه حرکتی نیز قابل تقسیم بندی هستند که به طور خلاصه به صورت زیر قابل تقسیم می باشند:
- روبات های ایستا[7] (غیر متحرک)
- روبات های متحرک[8]
- روبات های فضانورد
- روبات های پرنده
- روبات های دریا نورد
- سایر روبات ها
دسته اول روباتهای ایستا میباشند( شکل1-1). بیشتر روبات های صنعتی موجود در کارخانهها ازین دست می باشند. بازوهای روباتیک[9] و همچنین روباتهای پردازشگر و ابر محاسباتی[10] از این دست روبات می باشند.
دسته بعدی روباتهای متحرک می باشند که بر روی زمین حرکت می کنند. این گروه شامل طیف گستردهای از روباتها می باشد :
- روباتهای چرخدار[1]
- روباتهای زنجیردار[2]
- روباتهای پا دار
- روباتهای دوپا[3] (انسان نما)
- روباتهای سه پا
- روباتهای چهار پا
- دیگر موارد
شکل 1-2 نشان دهنده نمونههای مختلف از روباتهای متحرک بر روی زمین است. دسته بعدی روباتهای فضانورد هستند که مخصوص فعالیت در فضاهای کم گرانش طراحی میشوند و مخصوص انجام ماموریت در سطح کرات دیگر و یا
فرم در حال بارگذاری ...
[دوشنبه 1399-10-01] [ 05:37:00 ب.ظ ]
|