2-3- حسگرهای الکتروشیمیایی………………………………………………………. 13
2-4- زیست حسگرها……………………………………………………………………… 15
2-5- زیست حسگرهای الکتروشیمیایی DNA………………………………………..
2-6- ساختار مولکول DNA……………………………………………………………..
2-6-1- DNA سه ­رشته­ ای………………………………………………………………. 23
2-6-2-  DNA چهار رشته­ ای…………………………………………………………… 24
2-6-2-الف- G-DNA………………………………………………………………………..
2-6-2- ب- i-motif……………………………………………………………………….
2-7- کاوشگرها و تثبیت آن­ها بر سطح مبدل……………………………………… 26
2-7-1- تثبیت DNA کاوشگر از طریق جذب سطحی…………………………… 26
2-7-1-1 جذب سطحی فیزیکی……………………………………………………….. 27
2-7-1-2- جذب سطحی در پتانسیل کنترل شده………………………………….. 27
2-7-1-3-تثبیت DNA بوسیله اتصال کوالانسی…………………………………….. 27
2-8- انواع برهم­کنش میان نشانگرها و DNA………………………………………….
2-8-1- برهم­کنش الکترواستاتیک………………………………………………………. 28     
2-8-2- برهم­کنش درون رشته­ای……………………………………………………….. 28
2-8-3- برهم­کنش با شیار…………………………………………………………………. 28 
2-9- تلومر……………………………………………………………………………………… 29
2-10-  آنزیم تلومراز……………………………………………………………………. 29
فصل سوم: بخش تجربی
3-1-مواد شیمیایی مورد نیاز……………………………………………………………… 32
3-2-وسایل و تجهیزات……………………………………………………………………… 34
3-3- الکترودهای مورد استفاده………………………………………………………. 35
3-4-تهیه الکترودهای کار………………………………………………………………….. 35
3-4-1- تهیه­ الکترود خمیر کربن برهنه (CPE)……………………………………… 35
3-4-2- تهیه الکترود خمیر کربن اصلاح شده با نانوذرات  2 SiO و –L سیستئین / L -Cys) 2NSiO)……
3-5- بافرهای مورد استفاده برای تثبیت pH ……………………………………………
3-6- تهیه محلول­ها…………………………………………………………………………. 38
3-7- مشخصه­یابی سطح الکترود……………………………………………………. 38
فصل چهارم: اصلاح الکترود خمیر کربن با نانو ذرات 2 SiO و کاربرد آن برای تعیین الکتروشیمایی داروی تاموکسیفن سیترات
4-1- مطالعه ولتامتری چرخه­ای الکترودهای کار………………………………….. 41
4-2- مطالعه اسپکتروسکوپی امپدانس الکتروشیمیایی……………………… 42
4 -3- اثر pH محلول بافر به رفتار الکتروشیمیایی تاموکسیفن سیترات در سطح /CPE 2SiO …..
4-4- بررسی رفتار الکتروشیمیایی محلول تاموکسیفن سیترات در سطح الکترودهای خمیر کربن اصلاح شده با نانو ذرات
2 SiO……………………………………………………………………………………….
4-5- اثر سرعت روبش پتانسیل بر رفتار الکتروشیمیایی تاموکسیفن سیترات در سطح /CPE 2SiO ……….
4-6- تعیین محدوده خطی غلظتی تاموکسیفن سیترات و حد تشخیص روش……………….. 48
4-7- اندازه ­گیری تاموکسیفن سیترات در نمونه­ حقیقی به کمک روش پیشنهادی…………….. 50
فصل پنجم: اصلاح الکترود خمیر کربن با نانو ذرات  /L-Cys 2 SiO و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی در بررسی برهم­ کنش ساختار DNA­-i-motif باتاموکسیفن
5-1- کلیات………………………………………………………………………………. 53
5-2- اهمیت ساختار i-motif DNA……………………………………………………
5-3- ویژگی­های CPE/2NSiO / i-Motif DNA……………………………………….
5-3-2- مطالعه ولتامتری چرخه­ای چگونگی تثبیت DNA بر روی سطح الکترود اصلاح شده…….. 58
5-4 –مطالعه رفتار الکتروشیمیایی تاموکسیفن در سطح زیست حسگر الکتروشیمیایی……. 59
5-4-1- ولتامتری چرخه­ای………………………………………………………………… 59
5-4-2- ولتامتری موج مربعی……………………………………………………………… 61
5-5 – اثر pH  بر رفتار الکتروشیمیایی تاموکسیفن در سطح………………………. 63
5-6- بررسی طیف سنجی CD……………………………………………………………… 
5-7- نتیجه ­گیری……………………………………………………………………………. 67
نتیجه ­گیری نهایی………………………………………………………………………. 68
پیشنهادات برای کارهای آینده…………………………………………………………. 69

مقالات و پایان نامه ارشد

 

مراجع………………………………………………………………………………. 70
چکیده:
تلومرها كمپلكس­هایی متشكل از DNA و پروتئین می­باشند كه نقش مهمی را در جهش­های ژنی و ایجاد سرطان دارند. آنزیم تلومراز، طول كروموزوم را از طریق سنتز تلومرها افزایش داده و در حدود 85% از سرطان­ها فعال است. در انتهای تلومرها یک دو رشته­ای DNA با توالی (5-TTAGGG):(5-CCCTAA) وجود دارد. رشته غنی از سیتوزین قادر است ساختار i-motif DNA را تشكیل دهد. مطالعات نشان داده است كه با پایدار كردن این ساختار می­توان از تشكیل ساختار دو رشته­ای و در نتیجه طویل شدن طول تلومرها جلوگیری كرد. داروی تاموكسیفن یک عامل هورمونی ضد استروژن برای درمان سرطان سینه می­باشد كه برای مدت زیادی به منظور درمان سرطان سینه به كار می­رود. در این تحقیق در مرحله اول امکان اندازه ­گیری الکتروشیمیایی داروی تاموکسیفن سیترات در سطح الکترود خمیر کربن اصلاح شده با  نانو ذرات 2SiO به کمک ولتامتری پالس تفاضلی و ولتامتری چرخه­ای مورد مطالعه قرار گرفت و سنجش مقدار تاموکسیفن در نمونه حقیقی به کمک روش افزایش استاندارد صورت پذیرفت. در مرحله دوم، با طراحی زیست حسگرهایی بر مبنای ساختار i-motif، برهمکنش این ساختار با داروی ضد سرطان تاموکسیفن سیترات، مورد بررسی قرار گرفت. زیست­حسگر الکتروشیمیایی از طریق اصلاح الکترود خمیر کربن (CPE) با نانوذرات SiOو –L سیستئین  سپس تثبیت ساختار i-motif DNA  بر روی سطح تهیه شد و برای بررسی برهم­كنش این ساختار با داروی تاموكسیفن به كار گرفته شد. پایداری ساختار i-motif ، یک استراتژی خوب برای درمان سرطان است، چون می ­تواند از واکنش تلومراز در سلول سرطانی جلوگیری کند. برهم­کنش بینi-motif   DNAو دارو تاموکسیفن، در بافر فسفات M 1/0(PBS)  و محلول3  از طریق ولتامتری چرخه­ای (CV) و روش ولتامتری موج مربعی (SWV) مورد مطالعه قرار گرفت. دماغه اکسایشی تاموکسیفن بعد از تثبیتDNA i-motif  روی سطح الکترود به دلیل برهم­کنشDNA i-motif  و تاموکسیفن مشاهده شد و با افزایش غلظت داروی تاموکسیفن، سیگنال افزایش می­یابد. از روش طیف­بینی دورنگ نمایی دورانی (CD) برای بدست آوردن اطلاعاتی در مورد نحوه شکل­ گیری ساختار و برهم­کنش لیگاند با این ساختار مورد بررسی قرار گرفت و نتایج نشان داد که این ساختار در pH حدود 5/4 ساخته شده، ولی پایداری آن با افزایشpH  محیط کاهش می­یابد. حد تشخیص کاوشگر تثبیت شده بر سطح الکترود خمیر کربن اصلاح شده بر مبنای سه برابر انحراف استاندارد برابرm μ 06/0 تعیین ­شد.
فصل اول: مقدمه
1-1- مقدمه
تشخیصDNA ، یکی از حوزه های مهم بیولوژی مولکولی و مطالعات زیست فناوری است. تشخیص توالی بازهای خاص در نوکلئیک اسیدهای انسانی، ویروسی و باکتریایی از اهمیت بسزایی در حوزه های متعدد برخوردار است که دارای کاربرد در تشخیص: عوامل بیماری، ارگانیسم­های آلوده کننده غذایی، تحقیقات زیست محیطی و علوم جنایی می­باشد. از زمانیکه پالیکیک، فعالیت الکتروشیمیایی نوکلئیک اسیدها را کشف کرد [1]، زیست حسگرها امیدهای تازه­ای برای ایجاد روش های سریع، ارزان و ساده برای تشخیص نوکلئیک اسیدها فراهم ساخته­اند [2]. تشخیص یا آشکارسازی الکتروشیمیایی گونه­ های زیستی براساس واکنش­های الکتروشیمیایی است که در طول فرایندهای تشخیص زیستی اتفاق می­افتد [3] .به علت اینکه واکنش­های الکتروشیمیایی مستقیماً یک علامت الکترونیکی ایجاد می­ کنند، نیازی به دستگاه­های گرانقیمت تبدیل علامت وجود ندارد. علاوه­ بر این، به علت اینکه کاوشگر می ­تواند براحتی بر روی الکترودها تثبیت شود، تشخیص آن می ­تواند توسط آنالیز الکتروشیمیایی ارزانقیمت انجام شود. همچنین سیستم­های قابل حمل برای آزمایشات کلینیکی و تحقیقات زیست­ محیطی توسعه یافته است [4]. ابزارهای الکتروشیمیایی، بسیار حساس، ساده و سریع بوده و براحتی به کار برده می­شوند و با فناوری­های نانو سازگاری دارند. بنابراین به نظر می­رسد، نامزدهای خوبی برای تشخیص سریع و ارزانقیمت بیماری­های ژنی و تشخیص گونه ­های بیولوژیکی پاتوژنی می­باشند.
یکی از بزرگترین چالش‌ها در قلمرو الکتروشیمی تجزیه­ای، طراحی و ساخت الکترودهایی می‌باشد که در حالت ایده‌آل بتوانند به یک گونه‌ی شیمیایی خاص به صورت کاملاً گزینش‌پذیر و با حساسیت بالا پاسخ دهند. زیست ­حسگرهای الکتروشیمیایی، دسته وسیعی از الکترودهای اصلاح شده می­باشند که امروزه بسیار مورد توجه محققین قرار گرفته­اند [5]. زیست حسگر، ابزاری است که از یک لایه فعال بیولوژیکی به عنوان جزء شناساگر استفاده می­ کند تا عوامل فیزیکی برهم­کنش بیولوژیکی را به علامت قابل اندازه ­گیری تجزیه­ای تبدیل کند [6]. دو عامل در طراحی یک زیست حسگر مناسب نقش ایفا می­ کنند: الف) روش مناسب تثبیت پذیرنده زیستی در سطح مبدل که موجب افزایش طول عمر، حساسیت و پایداری آن می­گردد. ب) انتخاب مبدل مناسب. انواع متداول مبدل­های مورد استفاده در زیست حسگرها، شامل مبدل­های: الکتروشیمیایی  [3]، نوری (نورتابی، جذب و رزونانس پلاسمون سطح ) [9]، حساس به تغییر جرم [10] و حرارت می باشند [11]. زیست حسگرها خصوصیات و مزایای خوبی، نظیر: آسانی استفاده، سرعت تشخیص مناسب، حساسیت بالا و هزینه کمتر نسبت به روش­های طیف سنجی وکروماتوگرافی مایع با عملکرد بالا را دارا می­باشند که قادرند گونه آزمایشی مورد نظر را در غلظت­های بسیار کم در نمونه‌های بیولوژیکی اندازه ­گیری کنند [14-12]. در حقیقت زیست حسگرها، می­توانند با بهره­ گیری از هوشمندی مواد بیولوژیك، تركیب یا تركیباتی را شناسایی نمایند که با آنها واكنش داده و بدین ترتیب یک پیام شیمیایی، نوری و یا الكتریكی تولید کنند. اساس کار یک زیست حسگر تبدیل پاسخ بیولوژیکی به یک پیام قابل اندازه ­گیری است [15]. بطور کلی هر زیست حسگر شامل، اجزای: گونه آزمایشی مورد نظر، لایه زیستی، مبدل، پردازشگر و نمایشگر است. انواع پذیرنده­های زیستی که در زیست حسگرها مورد استفاده قرار می­گیرند، شامل: آنزیم، آنتی بادی، گیرنده­های سلولی، اسیدهای نوکلئیک DNA یا RNA، میکروارگانیسم یا سلول کامل، بافت و غیره هستند [16].
یک زیست حسگر DNA، وسیله­ای است که عامل تشخیص بیولوژیکی آن، کاوشگر DNA است. کاوشگرهای DNA، الیگونوکلئوتیدهای کوتاه تک رشته­ای (ss-DNA) هستند که معمولاً کاوشگر نامیده می­شوند. دئوکسی ریبونوکلئیک اسید (DNA)، یک مولکول رمزگذار دستورالعمل­های ژنتیکی است که در تمام موجودات زنده، شناخته شده می­باشد. درشت مولکولDNA ، یک ساختار مارپیچی شبیه نردبان دارد که گروه­های فسفات و قند به طور یک در میان، نرده­های نردبان و باز­های آدنین، گوانین، سیتوزین و تیمین پله­های آن را تشکیل می­ دهند که این بازها، دو به دو با یکدیگر توانایی تشکیل پیوند هیدروژنی قوی را دارند. DNA به خاطر حضورگروه­های فسفات در ساختار آن، دارای بار منفی می­باشد و از این رو خاصیت پلی آنیونی را دارد، به طوری كه بازهای آلی به سمت داخل و گروه فسفات به سمت بیرون یا در سطح خارجی درشت مولکول  DNAقرار می­گیرند. در DNA، هر رشته از نوکلئوبازها تنها با یک نوع رشته دیگر از نوکلئوبازها جفت می­شوند که به آن جفت شدن بازهای مکمل می­گویند. در ساختار دو رشته­ایDNA ، باز آدنین در مقابل تیمین با دو پیوند هیدروژنی و گوانین در مقابل سیتوزین با سه پیوند هیدروژنی قرار دارد. پس یک توالی خاص از DNA قادر است تنها به توالی مکمل خود پیوند شود [17]. در سال­های اخیر، تلاش­ های زیادی برای طراحی زیست حسگرهای الکتروشیمیایی با صحت، حساسیت و انتخاب پذیری تقویت شده، انجام شده است [18]. نانوذرات می­توانند در این زمینه بسیار مفید باشند و در طراحی زیست حسگرهای الکتروشیمیایی که نسبت به سایر زیست حسگرها کارائی بالاتری دارند، به طور عمده ای استفاده ­شوند [19].
نانوذرات به عنوان یکی از مهمترین ساختارها در حوزه فناوری نانو، با توجه به اندازه کوچک آنها، خواص فیزیکی، شیمیایی و الکترونیکی منحصر به فردی را نشان می­ دهند که در تهیه زیست حسگرها، بسیار مورد توجه می­باشند [20]. ویژگی­های یک ماده می ­تواند به طور معنی داری با اندازه ذرات آن تغییر کند. بسیاری از خواص ماده، از جمله: ویژگی­های ساختاری، گرمایی، شیمیایی، مکانیکی، مغناطیسی و نوری در اثر کاهش اندازه ذره تغییر می­ کند. در نتیجه، با بهره گرفتن از این مواد در ساخت نانوزیست حسگرها، می­توان خواص جدید و مختلفی ایجاد نمود که از آنها، بتوان برای مطالعه بهتر سیستم­های متفاوت استفاده کرد. از میان نانوزیست حسگرها، نانوزیست حسگرهای الکتروشیمیایی رشد خوبی داشته­ است ]21 [.
نانوزیست فناوری DNA،  فناوری بالقوه­ای است که از تلفیق زیست فناوری و فناوری نانو بوجود آمده است. نانوزیست فناوری DNA، از ساختار و خواص مولکول DNA جهت استفاده در زمینه زیستی، مهندسی و پزشکی بهره می­برد. هدف اساسی نانوزیست فناوری DNA، ساخت مواد با ساختار تکرار شونده، وسایل و ماشین­هایی در ابعاد نانو، توسعه­ این ساختارها به سطوح بزرگتر (ماکروسکوپی) با بهره گرفتن از خواص ساختاری و عملکردی و برهم­کنش­های بین مولکولی DNA است. در این زمینه، یکی از مواردی که بسیار مورد توجه محققین قرار گرفته است، مطالعه و بررسی در مورد ساختار DNA و چگونگی عملکرد آن در شرایط محیطی متفاوت و برهم­کنش­های آن با ترکیبات مختلف بوده است [22]. همانطور که می­دانیم مولکول DNA یک ماده ژنتیکی است که حامل اطلاعات ژنتیکی در تمام موجودات زنده می­باشد. مولکول DNA، دارای توالی خاصی ناشی از چگونگی آرایش بازهای تشکیل­دهنده آن می­باشد که این توالی سبب ایجاد خواص خاصی در هر رشته DNA می­گردد. توالی DNA جهت پردازش اطلاعات مفید بوده و سبب می­گردد که ساختار آن به صورت پایا و محکم درآید. علاوه بر این، DNA دارای خواص منحصر به فردی مانند دارا بودن ساختار هندسی در ابعاد نانو، ذخیره و کد کردن اطلاعات، خودتکثیری، خودتشخیصی ساختار و خودآرایی است [23]. امروزه، محققین تعداد زیادی از نانوزیست حسگر DNA ساخته­اند که از آنها در جهت مطالعه برهم­کنش DNA با سایر ترکیبات از جمله: داروها، پروتئین­ها و ترکیبات شیمیایی مختلفی استفاده شده است ]25،24[.
همچنین نانو مواد ، انتقال الکترون بین زیست مولکول­های تثبیت شده و سطح الکترود را آسان می­ کنند. نانوذرات برای تثبیت مولکول­های زیستی­، کاتالیز واکنش­های الکتروشیمیایی، افزایش سرعت انتقال الکترون بین سطح الکترود و پروتئین، نشان دار کردن مولکول­های زیستی و حتی به عنوان واکنشگر عمل می­ کنند [26]. با توجه به بزرگی سطح مؤثر و بالا بودن سطح انرژی، نانوذرات بیومولکول­ها را بشدت جذب کرده و برای تثبیت مولکول­های زیستی در ساخت زیست حسگر بکار می­روند . انواع زیادی از نانوذرات، مانند: نانوذرات اکسیدی (مثلاً 2SiO) برای ساخت حسگرهای الکتروشیمیایی و زیست حسگرها به کار گرفته شده ­اند [29]. این نانوذرات برای تثبیت مولکول­های زیستی به دلیل سازگاری خوب و آماده سازی آسان، استفاده شده ­اند .
DNA تلومری انسان، از تکرارهای پشت سرهم بازهای تیمین، آدنین، گوانین و سیتوزین، CCCTAA)/(TTAGGG تشکیل شده است [32]. تلومرها دارای ساختار خاصی هستند که موجب استحکام و پایداری مولکول خطی DNA می­شوند و انتهای كرموزوم را از تجزیه شدن، نوآرایی و الحاق انتهایی حفظ می­كنند. در هر تقسیم سلولی به شكل پیوسته، بخشی از طول تلومر كوتاه می­ شود. كوتاه شدن پیوسته تلومر به جدا شدن یک سری از پروتئین­ها از ساختار تلومر و تغییر بیان ژن منجر می­ شود. كوتاه شدن مداوم تلومر به توقف چرخه سلولی و مرگ سلولی می­انجامد [35-33]. تلومراز آنزیمی است كه بدون نیاز به الگو، موجب سنتز تلومر می­ شود. این سلول­ها به كمك آنزیم تلومراز، كوتاه شدن تلومر را كه در پی تقسیم­های متوالی روی می­دهد، جبران می­ کنند [36]. با این حال، آنزیم تلومراز، در حدود 90 درصد از سلول­های سرطانی، سطح بالایی از فعالیت را دارد و همین فعالیت بالا منجر به ایجاد سرطان می­گردد    . چنانچه اتصال تلومرازها به نواحی تلومری توسط برهم­کنش مولکول­های کوچک با نواحی تلومری مهار شود، به شکل مستقیم فعالیت تلومراز کاهش می­یابد.
از طرف دیگر، در رشته­های DNAی غنی از باز سیتوزین C، ساختارهایی می تواند شکل بگیرد که در آن، هر C از طریق پیوند هیدروژنی با سه C دیگر در ارتباط باشد، به شرط آنکه Cی مقابل آن به صورت همی پروتونه باشد، یعنی جفت باز C-C+ شکل بگیرد، به چنین ساختاری، ساختار i-motif می­گویند و در شرایطی تشکیل می­ شود که رشته DNA غنی از باز سیتوزین باشد . ترکیباتی که با توالی­ های ذکر شده بر همکنش بدهند، قادر به مهارکردن فعالیت تلومراز می­باشند. پایداری ساختارi-motif  به تکرار توالی دارای سیتوزین، pH اسیدی ملایم، ماهیت و غلظت کاتیون­های موجود در محلول بستگی دارد. پایداری ساختار i-motif پیچ خورده در pH اسیدی ملایم، یک استراتژی خوب برای درمان سرطان است، چون می­ تواند از واکنش تلومراز در سلول سرطانی جلوگیری می­ کند [41].
[1] Palecek
[2] Probe
[3] Biosensors
Luminescence
[5] Surface plasmon resonance
Deoxyribonucleic acid
Ribonucleic acid
5 Macromolecule
[9] Accuracy
Sensivity

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...