کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو



 



فهرست مطالب

فصل اول

1-1-کاتالیزگرها 2

1-1-1-انواع کاتالیزگرها 2

1-1-1-1-کاتالیزگر همگن.. 2

1-1-1-2-کاتالیزگر ناهمگن.. 3

1-1-2-روش­های افزایش سطح کاتالیزگر. 3

1-1-3-بسترکاتالیزگر. 4

1-1-3-1-کربن فعال. 5

1-1-3-1-1-انواع کربن فعال. 6

1-1-3-1-2-ساختار کربن فعال. 7

1-1-3-1-3-اندازه و ساختار منافذ کربن فعال. 8

1-1-3-1-4-ویژگی­های کربن فعال. 9

1-1-4-واکنش اپوکسایش کاتالیزوری آلکن­ها 10

1-1-4-2-اپوکسایش آلکن­ها با کاتالیزگرهای حاوی مولیبدن. 11

1-1-4-3-مروری بر کارهای گذشته. 12

فصل دوم

2-1-بررسی اپوسایش آلکن­ها توسط سیستم­های کاتالیزوری ناهمگن مولیبدن و بازشیف مولیبدن تثبیت شده بر روی کربن فعال عامل­دار شده 21

2-1-1-مواد بکار گرفته شده 21

2-1-2-دستگاه­های بکار گرفته شده 22

2-1-2-1-دستگاه کروماتوگرافی گازی (GC) 22

2-1-2-2-دستگاه آنالیز عنصری (CHN) 23

2-1-2-3-دستگاه طیف سنج فروسرخ تبدیل فوریه (FT-IR) 23

2-1-2-4-دستگاه ICP. 23

2-1-2-5-دستگاه میکروسکوپ الکترونی روبشی (SEM) 23

2-1-2-6-دستگاه آنالیز حرارتی (TG/DTA) 23

2-1-3-بررسی اپوکسایش آلکن­ها بوسیله ی سیستم­های کاتالیزوری ناهمگن مولیبدن تثبیت شده بر روی کربن فعال عامل­دار شده 24

2-1-3-1-عامل­دار کردن کربن فعال با گروه کربوکسیلیک اسید. 24

2-1-3-2-عامل­دار کردن کربن فعال با تیونیل کلراید. 24

2-1-3-3-تثبیت لیگاند دی­اتیلن­تری­آمین (dien) بر روی کربن فعال(AC) 25

2-1-3-4-واکنش سالیسیل آلدهید با کربن فعال عامل­دار شده 25

26

(acac) 26

(acac) 27

2-1-4-تهیه اکسنده اوره هیدروژن­پراکسید. 27

2-1-5-اپوکسایش آلکن­ها با ترشیوبوتیل هیدروژن پراکسید با کاتالیزگرAC-dien-MoO2(acac) ……………. 29

2-1-5-1-اثر نوع حلال. 28

2-1-5-2-اثر نوع اکسنده 28

2-1-5-3-اثر زمان. 29

2-1-5-4-اثر مقدار کاتالیزگر. 29

2-1-5-5-اثر مقدار اکسنده 30

2-1-5-6-اثر مقدار حلال. 30

2-1-5-7-اثر دما 30

2-1-5-8-بازیابی کاتالیزگر ناهمگن مولیبدن در اپوکسایش سیکلواکتن.. 31

(acac) 31

(acac) 31

فصل سوم

3-1-اهمیت و هدف از انجام پژوهش… 33

(acac. 36

3-2-2-آسیله کردن کربن فعال. 36

3-2-3-آمین­دار کردن کربن فعال. 37

(acac) 38

پایان نامه و مقاله

 

3-2-5-لیگاند باز شیف بر روی بستر کربن فعال. 39

(acac) 40

3-2-7-بررسی مورفولوژی با میکروسکوپ الکترونی روبشی SEM.. 41

3-2-8-آنالیز عنصری CHN و ICP. 43

3-2-9-آنالیز حرارتی (TG/DTA) 43

3-3-بررسی ویژگی­های کاتالیزوری کاتالیزگرهای ناهمگن تهیه شده و بهینه سازی عوامل موثر در اپوکسایش سیکلواکتن   46

3-3-1-بررسی اثر نوع حلال. 46

3-3-2-بررسی اثر نوع اکسنده 50

3-3-3-بررسی اثر زمان. 52

3-3-4-بررسی اثر مقدار کاتالیزگر. 55

3-3-5-بررسی اثر مقدار اکسنده 57

3-3-6-بررسی اثر مقدار حلال. 60

3-3-7-بررسی اثر دما 62

(acac) در  اپوکسایش سیکلواکتن   65

(acac) در اپوکسایش آلکن­های دیگر  67

(acac) 70

3-4-نتیجه گیری.. 72

3-5-آینده نگری.. 74

پیوست.. 75

منابع: 76

فهرست شکل­ها

شکل 1-1: تصویری از کربن فعال پودری،گرانوله و فیبری و کربن نانوتیوب (به ترتیب از چپ به راست). 6

شکل 1-2: تصویر قطعات کربنی منحنی شکل، شامل حلقه­های پنج ضلعی، شش ضلعی، هفت ضلعی.. 7

شکل 1-3: انواع منافذ در کربن فعال. 8

شکل 1-4: مکانیسم شلدون در اپوکسایش آلکن­ها 10

شکل 1-5: مکانیسم شارپلس در اپوکسایش آلکن­ها 11

شکل 1-6: چرخه کاتالیزوری جابه جا شدن اکسیژن به اولفین­ها با اکسنده ترشیوبوتیل هیدروژن پراکسید و کاتالیزگر مولیبدن  12

 شکل 1-7: مراحل آماده سازی کاتالیزگر Mo-APTS-A. 14

شکل 1-8: شمای سنتزی کاتالیزگر L1@ACox-  MnII 15

@ACox-  MnII 16

(acac)@DAB-MWCNT]. 17

شکل 1-12: تثبیت کمپلکسی از مس روی سطح کربن فعال اصلاح شده 19

شکل 1-13: تثبیت کمپلکسی از نیکل روی سطح کربن فعال اصلاح شده. 19

26

(acac) 34

(acac) 35

شکل 3-3 : طیف FT-IR کربن فعال آسیل کلرایددار شده. 37

شکل 3-4 : طیف FT-IR کربن فعال عامل­دار شده با دی­اتیلن تری­آمین. 38

(acac). 39

شکل 3-6 : طیف FT-IR مربوط به AC-Schiff-base. 40

(acac. 41

شکل 3-8: SEM کربن فعال با بزرگنمایی­های 50 و100. 42

(acac) با بزرگنمایی­های 50 و 100. 42

شکل 3-10: نمودار تجزیه حرارتی کربن فعال. 44

(acac) 45

(acac) 45

(acac) 46

(acac. 48

(acac. 49

(acac) 51

(acac. 52

(acac. 53

(acac. 54

(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 56

(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 57

(acac) طی30 دقیقه. 58

(acacطی                 30 دقیقه. 59

(acac) طی30 دقیقه. 61

(acac) طی30 دقیقه. 62

(acac) طی30 دقیقه. 63

شکل 3-27: بررسی اثر دما در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میل­مول TBHP به­عنوان اکسنده در 1میلی­لیتر حلال تتراکلریدکربن با 20 میلی­گرم کاتالیزور AC-Schiff-base-MoO2(acac)                     طی30 دقیقه. 64

(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0    میلی­مول سیکلواکتن با 12/1 میلی­مول TBHP به عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 66

(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0 میلی مول سیکلواکتن با 12/1 میلی­مول TBHP به عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 67

(acac) 71

فهرست جدول­ها

جدول2-1: مشخصات دستگاه کروماتوگرافی گازی ………………………………………………………………………………………………………23

جدول3-1: بررسی اثر نوع حلال در اپوکسایش 5/0 میلی­مول سیکلو­اکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 45 دقیقه با 25 میلی­گرم کاتالیزگر AC-dien-MoO2(acac)………………….49

(acac) 49

(acac). 50

(acac). 51

(acac). 53

(acac). 54

(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی­مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 55

(acac) در اپوکسایش 5/0 میلی­مول سیکلواکتن در 1 میلی­لیتر حلال با 4/1 میلی مول اکسنده TBHP در دمای جوش حلال طی 30 دقیقه. 56

(acac) طی30 دقیقه. 58

(acac) طی30 دقیقه. 59

(acac) طی30 دقیقه. 61

(acac) طی30 دقیقه. 61

(acac) طی30 دقیقه. 63

(acac) طی30           دقیقه. 64

(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0  میلی­مول سیکلواکتن با 12/1 میلیمول TBHP به عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 65

(acac) بازیابی شده در اپوکسایش کاتالیزوری 5/0 میلی­مول سیکلواکتن با 12/1 میلی مول  TBHPبه عنوان اکسنده در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 66

جدول3-17: بررسی ویژگی کاتالیزوری کاتالیزگر AC-dien-MoO2(acac) در اپوکسایش 5/0میلی­مول از سایر آلکن­ها با 12/1 میلی­مول TBHP به­عنوان اکسنده، در 1 میلی لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 68

جدول 3-18: بررسی ویژگی کاتالیزوری کاتالیزگر AC-Schiff-base-MoO2(acac) در اپوکسایش 5/0میلی مول از سایر آلکن ها با 12/1 میلی­مول TBHP به­عنوان اکسنده، در 1 میلی­لیتر حلال تتراکلریدکربن در دمای جوش حلال در 30 دقیقه. 69

(acac) با سیستم­های کاتالیزوری مشابه  73

 

چکیده

افزایش نگرانی­های زیست محیطی و پیشرفت فرایندهای شیمی سبز، جایگزینی کاتالیزگرهای همگن را با انواع ناهمگن آن ضروری کرده است. در این پژوهش کربن فعال به­سبب خواص ویژه­ای که دارد به­عنوان یک بستر مناسب بکار گرفته شد. مهمترین این خواص مقاومت در محیط­های اسیدی و بازی، ارزان قیمت بودن، تخلخل و مساحت سطح بالا و امکان بازیافت فلزات با سوزاندن بستر می­باشد. در این تحقیق، ابتدا کربن فعال عامل­دار شده با گروه کربوکسیلیک اسید با تیونیل­کلراید،کلردار و سپس لیگاند دی­اتیلن تری­آمین جایگزین کلر گردید و در ادامه کمپلکس مولیبدن به کربن فعال عامل­دار شده افزوده و کاتالیزگر ناهمگنAC-dien-MoO2(acac)  تهیه شد. برای کاتالیزگر ناهمگن          AC-Schiff-base-MoO2(acac) پس از اتصال لیگاند دی­اتیلن­تری­آمین به کربن فعال آسیل­کلرایددار شده، در مرحله بعد با رفلاکس بوسیله سالسیل­آلدهید در اتانول گروه آمین به باز­شیف تبدیل و سپس کمپلکس مولیبدن افزوده و کاتالیزگر ناهمگن تهیه شد. این کاتالیزگرها با تکنیک­های CHN،TG/DTA ، FT-IR، SEM وICP  مورد بررسی قرار گرفتند سپس در اپوکسایش آلکن­های مختلف بکار گرفته شدند. همچنین فرایند کاتالیزوری برای پارامترهای مختلفی مانند مقدار کاتالیزگر،

موضوعات: بدون موضوع  لینک ثابت
[یکشنبه 1399-09-30] [ 11:11:00 ب.ظ ]




فهرست مطالب

عنوان                                                                                                                                       صفحه

چکیده   …………………………………………………………………………………………………………….………………………………………   

فصل اول:فوران و چگونگی تولیدآن در غذا و سرطان زایی اش…………………………………………………………………………1

1-1 فوران چیست؟…………………………………………………………………………………………………………………………………………..…..2

1-2 شکل گیری فوران در غذا………………………………………………………………………………………………………………………………..2

1-2-1 غذای کودک حاوی ویتامینC………………………………………………………………………………………………………………………4

1-2-2 معتبر سازی روش اندازه گیری……………………………………………………………………………………………………………………..4

1-3 ارزیابی سیستم مدل ………………………………………………………………………………………………………………………………………..5

1-4 اثر عوامل داخلی و خارجی ……………………………………………………………………………………………………………………………..5

1-4-1 اثر نوع بافر و PH ………………………………………………………………………………………………………………………………………6

1-4-2 اثر غلظت اسید آسکوربیک ………………………………………………………………………………………………………………………….6

1-4-3 اثر نسبت مولار اسید آسکوربیک به دهیدروآسکوربیک اسید……………………………………………………………………………..6

1-4-4 اثر حضور پروتئین …………………………………………………………………………………………………………………………………….7

1-4-5 اثر زمان و درجه حرارت گرما دادن تشکیل فوران …………………………………………………………………………………………..7

1-4-6 اثر سایر ترکیبات روی تشکیل فوران …………………………………………………………………………………………………………….7

1-5 فرایندUV …………………………………………………………………………………………………………………………………………………….8

1-6 اثر بر سلامت …………………………………………………………………………………………………………………………………………………9

1-7 متابولیسم …………………………………………………………………………………………………………………………………………………….10

1-8 استراتژی های تکنولوژیکی به منظور کاهش فوران ……………………………………………………………………………………………11

1-9 استراتژیکی پیشگیری …………………………………………………………………………………………………………………………………….12

1-9-1 تغییر در پارامتر های فرایند ………………………………………………………………………………………………………………………..12

1-9-2 تغییر در فرمولاسیون …………………………………………………………………………………………………………………………………13

1-9-3 حذف یا جایگزینی اجزا ……………………………………………………………………………………………………………………………13

1-9-4 افزودن ترکیبات ………………………………………………………………………………………………………………………………………..13

1-10 استراتژی های پس از فراوری……………………………………………………………………………………………………………………….13

1-10-1 استراتژی های حذف ………………………………………………………………………………………………………………………………14

1-10-2 پختن در ظروف در باز ……………………………………………………………………………………………………………………………14

1-10-3 حذف فیزیکی ………………………………………………………………………………………………………………………………………..14

1-10-4اشعه یونیزه کننده …………………………………………………………………………………………………………………………………….15

1-11 گزینه های کنترل…………………………………………………………………………………………………………………………………………15

1-12 قانون گذاری………………………………………………………………………………………………………………………………………………16

1-13 مروری بر تحقیقات گذشته …………………………………………………………………………………………………………………………16

فصل دوم :ریز استخراج فاز جامد با بهره گرفتن از جاذب پلیمری قالب مولکولی   ………………………………………………. .19

مقدمه   …………………………………………………………………………………………………………………………………………………………….. 20

2-1   استخراج    ……………………………………………………………………………………………………………………………………………… 20

2-1-1 خصوصیات حلال    ……………………………………………………………………………………………………………………………….. 21

2-2 استخراج با حلال    …………………………………………………………………………………………………………………………………….. 22

2-3 استخراج با فاز جامد(SPE)    …………………………………………………………………………………………………………………….. 22

2-4 ریز استخراج با فاز جامد(SPME)    …………………………………………………………………………………………………………… 23

2-4-1 مزایای میکرو استخراج با فاز جامد    ……………………………………………………………………………………………………….. 24

2-4-2 پارامترهای بهینه سازی کردن میکرو استخراج با فاز جامد    ………………………………………………………………………… 25

2-4-3 عوامل موثر بر مقدار ماده ی جذب شده    ………………………………………………………………………………………………… 26

2-4-4 انواع روش های نمونه برداری    ………………………………………………………………………………………………………………. 26

پایان نامه و مقاله

 

2-4-5 انتخاب روش استخراج    ………………………………………………………………………………………………………………………… 27

2-4-6 معایب میکرو استخراج با فاز جامد   …………………………………………………………………………………………………………. 27

2-4-7 انواع فایبرها    ……………………………………………………………………………………………………………………………………….. 27

2-4-8 انواع روش های هم زدن در میکرو استخراج با فاز جامد    ………………………………………………………………………….. 29

2-4-9 عوامل موثر بر میکرو استخراج با فاز جامد     ……………………………………………………………………………………………. 30

2-4-10 کاربردهای میکرو استخراج با فاز جامد     ………………………………………………………………………………………………. 30

2-5 سرنگ SPME      ……………………………………………………………………………………………………………………………………. 31

2-6 مروری بر تحقیقات گذشته SPME     ………………………………………………………………………………………………………… 32

2-7 انواع فازهای جامد    ………………………………………………………………………………………………………………………………….. 34

2-7-1 کربن(گرافیت)    ……………………………………………………………………………………………………………………………………. 35

2-7-2 سیلیکاژل    …………………………………………………………………………………………………………………………………………… 35

2-7-3 جاذب پلیمری    ……………………………………………………………………………………………………………………………………. 36

2-8 آشنایی با پلیمر و پایمریزاسیون      ………………………………………………………………………………………………………………. 36

2-8-1 پلیمر چیست؟     …………………………………………………………………………………………………………………………………… 36

2-8-2 انواع پلیمر ساختاری    ……………………………………………………………………………………………………………………………. 36

2-8-3 بسپارها از نظر اثر پذیری در برابر حرارت به دو دسته تقسیم می شوند   ……………………………………………………….. 36

2-8-4 انواع پلیمرها بر اساس منبع تهیه    ……………………………………………………………………………………………………………. 37

2-8-5 انواع روش های پلیمریزاسیون    ………………………………………………………………………………………………………………. 37

2-8-5-1 پلیمریزاسیون افزایشی   ……………………………………………………………………………………………………………………….. 37

2-8-5-2 پلیمریزاسیون تراکمی    ………………………………………………………………………………………………………………………. 37

2-9 پلیمرهای قالب مولکولی    ………………………………………………………………………………………………………………………….. 37

2-9-1 مزایای پلیمرهای قالب مولکولی  ………………………………………………………………………………………………………………. 39

2-9-2 عوامل سازنده یک پلیمر قالب مولکولی    …………………………………………………………………………………………………. 39

2-9-2-1 مونومر عاملی    …………………………………………………………………………………………………………………………………. 41

2-9-2-2 مولکول هدف(قالب)    ……………………………………………………………………………………………………………………….. 43

2-9-2-3 عامل اتصال عرضی     ………………………………………………………………………………………………………………………… 43

2-9-2-4 حلال     ……………………………………………………………………………………………………………………………………………. 44

2-9-2-5 آغازگر     ………………………………………………………………………………………………………………………………………….. 45

2-9-3 انواع پلیمرهای قالب مولکولی     ……………………………………………………………………………………………………………… 46

2-10 پلیمر قالب مولکولی کووالانسی    ………………………………………………………………………………………………………………. 46

2-10-1 مزایای پلیمرهای قالب مولکولی کووالانسی    ………………………………………………………………………………………….. 47

2-10-2 معایب  پلیمرهای قالب مولکولی کووالانسی    …………………………………………………………………………………………. 47

2-11 پلیمرهای قالب مولکولی نیمه کووالانسی     ………………………………………………………………………………………………… 47

2-12 پلیمرهای قالب مولکولی غیر کووالانسی      ………………………………………………………………………………………………… 48

2-12-1 مراحل سنتز پلیمر قالب مولکولی      ……………………………………………………………………………………………………… 48

2-12-2 دلایلی که از روش غیر کووالانسی بیشتر استفاده می شود     ……………………………………………………………………… 48

2-13 روش های تهیه پلیمر قالب مولکولی    ……………………………………………………………………………………………………….. 48

2-13-1 پلیمریزاسیون توده ای    ………………………………………………………………………………………………………………………… 49

2-13-2  روش پلیمریزاسیون رسوبی    ……………………………………………………………………………………………………………….. 49

2-13-3 پلیمریزاسیون با تورم چند مرحله ای    ……………………………………………………………………………………………………. 49

2-13-4 پلیمریزاسیون سوسپانسیون    …………………………………………………………………………………………………………………. 50

2-13-5 روش پیوند زنی    ………………………………………………………………………………………………………………………………… 50

2-14 کاربرد پلیمرهای قالب مولکولی    ………………………………………………………………………………………………………………. 50

2-14-1  کاربرد پلیمرهای قالب مولکولی برای ریز استخراج با فاز جامد (SPME)    ……………………………………………… 50

2-15-1 کاربرد پلیمرهای قالب مولکولی در حسگرها    ………………………………………………………………………………………… 51

2-15-2 کاربرد پلیمرهای قالب مولکولی در غشاء    ……………………………………………………………………………………………… 51

2-15-3 کاربرد پلیمرهای قالب مولکولی در کاتالیزگرها    ……………………………………………………………………………………… 52

2-15-4 کاربرد پلیمرهای قالب مولکولی در کروماتوگرافی    …………………………………………………………………………………. 52

فصل سوم : مطالعات تجربی      ……………………………………………………………………………………………………………… 53

3-1 مواد مصرفی    …………………………………………………………………………………………………………………………………………… 54

3-2 دستگاه وری    …………………………………………………………………………………………………………………………………………… 54

3-2-1 التراسونیک     ……………………………………………………………………………………………………………………………………….. 54

3-2-2 pH متر     ……………………………………………………………………………………………………………………………………………. 54

3-2-3 بن ماری     …………………………………………………………………………………………………………………………………………… 54

3-2-4 کروماتوگرافی گازی    GC …………………………………………………………………………………………………………………….. 54

3-2-5 آون     ………………………………………………………………………………………………………………………………………………….. 55

3-2-6 همزن مغناطیسی(هیتر)     ……………………………………………………………………………………………………………………….. 55

3-2-7 سرنگ SPME     …………………………………………………………………………………………………………………………………. 55

3-2-8 دستگاه (IR)      ……………………………………………………………………………………………………………………………………. 56

3-3 تهیه پلیمر قالب مولکولی    …………………………………………………………………………………………………………………………. 56

3-3-1 انتخاب عوامل    …………………………………………………………………………………………………………………………………….. 56

3-3-1-1 آنالیت یا نمونه     ………………………………………………………………………………………………………………………………. 56

3-3-1-2 مونومر عاملی مناسب     ……………………………………………………………………………………………………………………… 56

3-3-1-3 عامل اتصال دهنده عرضی     ………………………………………………………………………………………………………………. 57

3-3-1-4 حلال مناسب    ………………………………………………………………………………………………………………………………….. 58

3-3-1-5 آغازگر      ………………………………………………………………………………………………………………………………………… 58

3-3-2 روش سنتز پلیمر قالب مولکولی    ……………………………………………………………………………………………………………. 59

3-4 بهینه سازی شرایط جذب فوران در روش ریز استخراج با پلیمر قالب مولکولی   ………………………………………………… 60

3-4-1 تعیین ماکزیمم طول موج جذب    ……………………………………………………………………………………………………………. 60

3-4-2 بررسی اثر نمک    ………………………………………………………………………………………………………………………………….  60

3-4-3 بررسی اثر زمان     …………………………………………………………………………………………………………………………………  61

3-4-4 تاثیر pH محلول بر جذب پلیمر      ………………………………………………………………………………………………………..  62

3-4-5 تاثیر دما بر جذب پلیمر     ………………………………………………………………………………………………………………………  63

3-4-6 شناسایی فوران توسط دستگاه GC   ………………………………………………………………………………………………………..  63

3-4-6-1 برنامه دمایی دستگاه GC برای فوران ها     …………………………………………………………………………………………… 63

فصل چهارم : بحث و نتیجه گیری     ………………………………………………………………………………………………………… 65

4-1 سنتز پلیمر قالب مولکولی و پلیمر شاهد     ……………………………………………………………………………………………………. 66

4-1-1 پلیمریزاسیون پلیمر قالب مولکولی     ……………………………………………………………………………………………………….. 66

4-1-2 مکانیسم سنتز پلیمر قالب مولکولی    ………………………………………………………………………………………………………….68

4-1-3 طیف های FT-IR از پلیمر MIP و NIP   ……………………………………………………………………………………………….68

4-2 بهینه سازی شرایط جذب فوران توسط پلیمر قالب مولکولی    …………………………………………………………………………. 70

4-2-1 اثر نمک بر جذب فوران    ………………………………………………………………………………………………………………………. 70

4-2-2 اثر زمان بر جذب فوران    ………………………………………………………………………………………………………………………. 71

4-2-3 اثر دما بر جذب فوران    …………………………………………………………………………………………………………………………. 72

4-2-4 اثر pH محلول بر جذب پلیمر   ………………………………………………………………………………………………………………. 73

4-2-5 شناسایی فوران توسط دستگاه GC   ………………………………………………………………………………………………………… 74

خلاصه   …………………………………………………………………………………………………………………………………………………………… 75

پیوست………………………………………………………………………………………………………………………………………………………….. 76

پیوست 1؛ طیف FT-IR از NIP، در محدوده 400-4000 cm-1 به روش قرص KBr   ……………………………………….. 76

پیوست 2؛ طیف FT-IR از MIP، در محدوده 400-4000 cm-1 به روش قرص KBr    ………………………………………..  77

پیوست 3؛ طیف GC برای محلول 10 PPM فوران    ………………………………………………………………………………………….. 78

پیوست 4؛ طیف GC برای محلول 40 PPM فوران    ………………………………………………………………………………………….. 79

پیوست 5؛ طیف GC برای محلول 100 PPM فوران   …………………………………………………………………………………………. 80

پیوست 6؛تصویر TEM از  NIP،…………………………………………………………………………………………………………………………81

پیوست7؛تصویر TEMاز  MIP،………………………………………………………………………………………………………………..82

منابع ……………………………………………………………………………………………..………………………………………………………………… 83

چکیده انگلیسی………………………………………………………………………………………………………………………………………………….. 88

فهرست اشکال

عنوان                                                                                                                                        صفحه

(1_1)مکانیسم تشکیل فوران………………………………………………………………………………………………………………………………   11

  • مراحل استخراج فاز جامد …………………………………………………………………………………………………………………  23
  • نمودار پیشرفت میکرو استخراج با فاز جامد از سال 2000 ………………………………………………………………….    24
  • انواع روش های نمونه برداری در میکرو استخراج با فاز جامد A)نمونه برداری به صورت مستقیم B)از فضای فوقانی ………………………………………………………………………………………………………………………………………….   27
  • نمایش پوشش های پلیمری بر اساس قطبیت ……………………………………………………………………………………..   29
  • سرنگ SPME …………………………………………………………………………………………………………………………….   31
  • تصویر کلی از پلیمریزاسیون فالب مولکولی ………………………………………………………………………………………..   41
  • مونومرهای رایج برای تهیه پلیمرهای قالب مولکولی ……………………………………………………………………………   42
  • ساختار شیمیایی اتصال دهنده های عرضی استفاده شده در سنتز پلیمرهای قالب مولکولی ………………………..   44
  • آغازگرهای رایج مورد استفاده در سنتز پلیمرهای قالب مولکولی …………………………………………………………….  46
  • طرح شماتیک سنتز پلیمر قالب مولکولی کووالانسی ……………………………………………………………………………  47
  • پلیمرهای قالب مولکولی در غشاء ………………………………………………………………………………………………………  51
  • ساختار مولکول نمونه …………………………………………………………………………………………………………………….  57
  • ساختار مونومر عاملی متاکریلیک اسید ………………………………………………………………………………………………..  57
  • ساختار اتصال دهنده عرضی اتیلن گلیکول دی متاکریلات ……………………………………………………………………. 58
  • ساختار حلال مورد استفاده در این سنتز …………………………………………………………………………………………… 59
  • ساختار آغازگر مورد استفاده در این سنتز ………………………………………………………………………………………….. 59
  • مرحله آغاز پلیمریزاسیون افزایشی رادیکال آزاد MAA با بهره گرفتن از آغازگر AIBN ……………………………….  67
  • مرحله انتشار پلیمریزاسیون افزایشی رادیکال آزاد MAA ……………………………………………………………………… 67
  • مکانیسم پایان پلیمریزاسیون افزایشی رادیکال آزاد MAA به روش ترکیبی …………………………………………….  68
  • مکانیسم پایان پلیمریزاسیون افزایشی رادیکال آزاد MAA به روش تسهیم نامتناسب ……………………………….  68
  • طیف FT-IR ………………………………………………………………………………………………………………………………….. 69

فهرست جداول

عنوان                                                                                                                     صفحه

مروری بر تحقیقات گذشته در زمینه اندازه گیری فوران……………………………………………………………………………………………..16

پوشش های فایبری همراه با ضخامت و کاربرد    ……………………………………………………………………………………………………………  29

  • انواع فازهای پیوندی ……………………………………………………………………………………………………………………………………  36

(3-1)    بررسی اثر نمک بر جذب پلیمر قالب مولکولی    ……………………………………………………………………………………………..  61

(3-2)   بررسی اثر زمان بر جذب پلیمر قالب مولکولی     ……………………………………………………………………………………………..  62

(3-3)   بررسی اثر pH روی جذب     …………………………………………………………………………………………………………………………..  63

(3-4)   بررسی اثر دما روی جذب     …………………………………………………………………………………………………………………………….  63

(3-5)    برنامه دمایی دستگاه GC    ……………………………………………………………………………………………………………………………..  63

(3-6)    داده های دستگاه GC برای فوران    ………………………………………………………………………………………………………………..  64

(4-1)   درصد استخراج فوران بر اساس نمک    ……………………………………………………………………………………………………………  71

(4-2)   درصد استخراج فوران بر اساس زمان    ……………………………………………………………………………………………………………..  72

(4-3)    میزان استخراج پلیمر در گستره دما   ……………………………………………………………………………………………………………….   72

  • میزان استخراج پلیمر در pH=4-8 ………………………………………………………………………………………………………………  73
  • داده های دستگاه GC برای فوران ………………………………………………………………………………………………………………..  74

فهرست منحنی ها

عنوان                                                                                                                           صفحه

(4-1)  درصد استخراج فوران بر اساس نمک   …………………………………………………………………………………………………     71

(4-2)  درصد استخراج فوران بر اساس زمان   ………………………………………………………………………………………………….     72

(4-3)  درصد استخراج فوران بر اساس دما  ……………………………………………………………………………………………………..     73

  • درصد استخراج فوران بر حسب pH ………………………………………………………………………………………………..     74
  • سطح زیر پیک فوران در غلظت های متفاوت ……………………………………………………………………………………     74

چکیده

در این پروژه پلیمر قالب مولکولی جهت استخراج انتخابی فوران تهیه شد. برای تهیه این پلیمر از متاکریلیک اسید (مونومر عاملی)،  اتیلن گلیکول دی متاکریلات (عامل برقراری اتصالات عرضی)،  2و2-آزوبیس ایزو بوتیرو نیتریل (آغازگر)،

موضوعات: بدون موضوع  لینک ثابت
 [ 11:10:00 ب.ظ ]




فهرست مطالب

عنوان                                        صفحه
چکیده…1

  • مقدمه.2

2-مباحث نظری و مروری بر کارهای انجام‌شده   5
5
2-1-1-ساختار کیتین و کیتوسان. 6
2-1-2-خصوصیات کیتین و کیتوسان. 8
2-1-3-خصوصیات فیزیکی و شیمیایی کیتین و کیتوسان. 8
2-1-4-کاربردهای کیتین و کیتوسان. 8
2-2-گرافن.. 9
2-3-کاربرد کیتین و کیتوسان در حذف یون‌های فلزات سنگین.. 10
2-4-جذب یون‌های فلزات سنگین با بهره گرفتن از گرافن و مشتقات آن. 20
2-5-فرایند جذب… 24
2-5-1-جذب سطحی.. 24
2-5-2-تعادل جذب سطحی.. 24
2-5-3-عوامل مؤثر بر سرعت جذب سطحی.. 25
2-5-3-ب‌- اثر pH….. 25
2-5-3-ت‌-طبیعت فاز جذب شده. 25
2-5-3-ث‌-کشش سطحی.. 25
2-5-4-ترمودینامیک جذب سطحی.. 25
2-5-5-سامانه‌های جذب سطحی.. 26
2-5-6-جاذب ها … 30
2-6-روش‌های تهیه و سنتز گرافن.. 32
2-6-1-روش‌های پایین به بالا.. 32
2-6-2-روش‌های تولید بالا به پایین.. 33
2-6-2-ب‌-گرافیت اکساید. 35
2-7-عامل دار کردن شیمیایی گرافن.. 41
2-7-1-عامل دار کردن کووالانسی.. 42
2-7-2-عامل دار کردن غیرکووالانسی.. 50
2-7-3-تثبیت کردن در یک محیط یونی.. 54
2-7-4-به طور مستقیم از گرافیت… 56
2-8-نانو کامپوزیت‌های گرافن/پلیمر و روش تولید آنها 58
2-8-1-پلیمریزاسیون درجای تعاملی.. 59
2-8-2-تعامل حلالی.. 59
2-8-3-روش تعاملی مذاب… 60
3-کارهای عملی……61
3-1مواد.. 61
3-1-1-کیتوسان..  61
3-1-2-گرافن………..62
3-1-3-تری اتیلن تترامین.. 62
3-1-4-پلی اتیلن گلایکول. 62
3-1-5-فرمالدهید. 62
3-1-6-اتیل استات… 62
3-1-7-اسید سولفوریک…. 62
3-1-8-اسید نیتریک…. 63
3-1-9-سود سوزآور. 63
3-1-10-نمک کادمیوم نیترات… 63
3-1-11-تیونیل کلراید. 63
3-1-12-سدیم………..63
3-1-13-تتراهیدروفوران. 63
3-1-14-دی متیل فرمامید. 64
3-1-15-بنزوفنون. 64
3-2-تجهیزات…. 64
3-2-1-رفلاکس… 64
3-2-2-فیلتریزاسیون خلا.. 64
3-2-3-همزن لرزان. 64
3-2-4-دستگاه pH  متر. 65
3-3-نمونه‌سازی.. 65
3-3-1-اکسید گرافن.. 65
3-3-2-آسیلاسیون نانو گرافن.. 66
3-3-3-عامل دار کردن نانوگرافن.. 66

پایان نامه و مقاله

 

3-3-4-دانه کیتوسان. 67
3-3-5-نانوکامپوزیت دانه کیتوسان. 67
3-3-6-خشک کردن دانه ها 68
3-3-7-روش ساخت محلول یونی کادمیوم. 68
3-3-8-روش خشک کردن دی متیل فرمامید. 68
3-3-9-روش خشک کردن تتراهیدروفوران. 69
3-4-تعیین مشخصات… 71
3-4-1-دستگاه طیف‌سنجی زیر قرمز تبدیل فوریه. 71
3-4-2-تجزیه وزن سنجی گرمایی (TGA) 71
3-4-3-ریزبین الکترونی روبشی (SEM) 72
3-4-4- سیستم آنالیز عنصری EDX.. 74
3-4-5-دستگاه طیف سنجی جذب اتمی شعله (FAAS) 74
4-نتیجه‌گیری و بحث………..76
4-1-تعیین مشخصات گرافن عامل دار شده. 76
4-1-1-طیف‌سنجی زیر قرمز تبدیل فوریه. 76
4-1-2-تجزیه وزن سنجی گرمایی.. 78
4-1-3-ریخت‌شناسی نانو ذرات با بهره گرفتن از ریزبین الکترونی روبشی……..79
4-1-4-بررسی تخلخل نانوکامپوزیت ها 82
4-2-بررسی اثر تورم و جذب آب نانو کامپوزیت‌های کیتوسان. 85
4-3-جذب یون کادمیوم از محلول‌های آبی توسط نانوکامپوزیت هیدروژل های کیتوسان گرافن عامل دار شده……..86
4-3-1-به دست آوردن میزان جاذب بهینه جهت جذب یون کادمیوم. 86
4-3-2-به دست آوردن میزان pH بهینه در جذب یون کادمیوم. 88
4-3-3-به دست آوردن زمان تماس بهینه جهت جذب یون کادمیوم. 90
4-3-4-به دست آوردن میزان غلظت یون کادمیوم جهت جذب بهینه یون کادمیوم. 91
5-نتیجه‌گیری و پیشنهاد‌ها………93
مراجع………….95
فهرست شکل ها
شکل ‏2‑1: ساختار واحدهای منومری سلولز، کیتین و کیتوسان[2] 6
شکل ‏2‑2 ساختار شیمیایی  پلیمرهای کیتین و کیتوسان[2] 7
شکل ‏2‑3 جهت‌گیری زنجیره ها در گاما، بتا و آلفا کیتین[2] 8
شکل ‏2‑4 ساختار لانه‌زنبوری گرافن که عنصر مادر و تشکیل دهنده مواد دیگر همچون گرافیت و کربن و فولرن و کربن نانولوله می باشد[4] 10
شکل ‏2‑5 ایجاد اتصالات عرضی و بررسی سازوکار ساختار پس از چند اصلاح: 14
شکل ‏2‑6 به دست آوردن دانه های کیتوسان در حمام سدیم هیدروکساید[16] 15
شکل ‏2‑7 تصاویر میکروسکوپ الکترونی روبشی با بزرگنمایی به ترتیب 30 و 500 برابر[16] 16
شکل ‏2‑8 آماده سازی نانو کامپوزیت‌های مغناطیسی کیتوسان[17] 16
شکل ‏2‑9 تغییرات میزان جذب یون آلومینیوم با بهره گرفتن از کیتوسان با تغییر pH [18] 17
شکل ‏2‑10 تغییرات میزان جذب یون مس و سرب با بهره گرفتن از هیدروژل نانو کامپوزیت‌های کیتوسان/گرافن اکساید با گذشت زمان[20] 18
شکل ‏2‑11 تغییرات میزان جذب یون مس و سرب با بهره گرفتن از هیدروژل نانو کامپوزیت‌های کیتوسان/گرافن اکساید با تغییر ترکیب درصد گرافن اکساید[20] 19
شکل ‏2‑12 جذب رنگ های آنیونیEosin Y(سمت چپ) و کاتیونی متیلن بلو(سمت راست) توسط هیدروژل نانو کامپوزیت‌های کیتوسان/گرافن اکساید[20] 19
-RGO (سمت چپ)[21]. 20
شکل ‏2‑14 تصویر نمودار جذب انتخابی جیوه از محلول آبی با بهره گرفتن از کامپوزیت پلی پیرول/گرافن اکساید احیا شده(سمت راست) و تصویر میکروسکوپ الکترونی عبوری(TEM)  از این کامپوزیت (سمت چپ)[22]. 21
شکل ‏2‑15 ثبات ایجاد شده در نانوکامپوزیت مونولیت به دلیل استفاده از گرافن اکساید و سایکلودکسترین در مقایسه با مونولیت خالص با گذشت زمان مغروق بودن در آب[23]. 22
شکل ‏2‑16 میزان جذب یون فسفات با بهره گرفتن از گرافن در دماهای متفاوت[25]. 23
شکل ‏2‑17 میزان جذب یون فسفات با بهره گرفتن از گرافن در غلظت های متفاوت یون فسفات[25]. 23
شکل ‏2‑18 جذب سطحی با بهره گرفتن از سامانه غیر پیوسته[26]. 27
شکل ‏2‑19 جذب سطحی با بهره گرفتن از سامانه‌های بستر ثابت[26]. 28
شکل ‏2‑20 جذب سطحی با بهره گرفتن از سامانه بستر ضربه زده[26]. 28
شکل ‏2‑21 جذب سطحی با بهره گرفتن از سامانه بستر متحرک حالت پایا[26]. 29
شکل ‏2‑22 جذب سطحی گاز حامل با بهره گرفتن از سامانه‌های بستر سیال شده[26]. 30
شکل ‏2‑23 به دست آوردن گرافن با منشأ گرافیتی[47]. 34

شکل ‏2‑25 تغییر رنگ احیا گرافن اکساید(سمت چپ) و تبدیل آن به گرافن(سمت راست)[74]. 37
شکل ‏2‑26 تغییر حجم  0.5 گرافن اکساید در اثر گرمادهی سریع تا 1000 و تبدیل شدن به 75 گرافن[47]. 38
شکل ‏2‑27 تصویر میکروسکوپ الکترونی عبوری(TEM) از گرافن اکساید احیا شده به روش گرمایی که به شکل یک کاغذ مچاله شده در آمده است[76]. 39
(الف) اکسید کردن گرافن (ب) عامل دار کردن گرافن اکساید با آلکیل آمید و (ج) احیای گرافن عامل دار شده[85] 45
شکل ‏2‑29 عامل دار کردن گرافن احاطه شده توسط سورفکتانت SDBS با نمک دیازونیوم توسط واکنش جانشینی الکتروفیلی[70]. 46
شکل ‏2‑30 واکنش گروه‌های اکسیژنی کربوکسیل(سمت راست) و هیدروکسیل(سمت چپ) روی سطح گرافن اکساید با ایزوسیانات و تولید گرافن عامل دار شده[88]. 47
شکل ‏2‑31 عامل دار کردن گرافن اکساید با اکتادسیل آمین و استفاده از تیونیل کلراید[64]. 48
شکل ‏2‑32 تولید گرافن اکساید از گرافیت(بالا) و گرفت شدن زنجیره های کیتوسان بر روی سطح گرافن اکساید(پایین)[91]. 49
شکل ‏2‑33 گرفت کردن 1و3- دی پلار سایکولادیشن دیازنیوم ییلد بر روی سطح گرافن[93]. 50
شکل ‏2‑34 اصلاح گرافن با توجه به تعامل π-π بین اوربیتال π از گرافن و پلی ایزوپروپیل آکریلامید اختتام یافته با پیرن[100]. 53
شکل ‏2‑35 طرح‌واره‌ای از اصلاح گرافن با PPESO3-[101]. 54
. 55
شکل ‏2‑37 محیط آزمایش(سمت چپ) و لایه برداری از آند گرافیت(سمت راست)[57]. 58
شکل ‏3‑1 سامانه خشک کردن دی متیل فرمامید. 69
شکل ‏3‑2سامانه خشک کردن تتراهیدروفوران. 71
شکل ‏3‑3 دستگاه TGA.. 72
شکل ‏3‑4 دستگاه ریزبین الکترونی روبشی و دستگاه پوشش دهی سطح نمونه‌ها به منظور ایجاد هدایت الکتریکی. 73
شکل ‏3‑5 طیف مرجع آزمون EDX.. 74
شکل ‏3‑6 دستگاه جذب اتمی Perkin-Elmer مدلAanalyst 100. 75
شکل ‏4‑1 طیف زیر قرمز تبدیل فوریه نمونه‌ها 78
‏4‑2 دمانگاشت نانو ذرات گرافن خالص و اکسیدشده و  عامل دار شده. 79
شکل ‏4‑3 ریزنگار میکروسکوپ الکترونی روبشی از (a نانو ذرات گرافن و (b نانو ذرات گرافن اکسیدشده و (c نانو ذرات گرافن عامل دار شده با تری اتیلن تترامین.. 80
شکل ‏4‑4 تصاویر EDX میکروسکوپ الکترونی روبشی از یک لایه گرافن عامل دار شده با تری اتیلن تترامین (a توزیع گروه‌های عاملی اکسیژن دار(سبز) و نیتروژن دار(قرمز)  (b توزیع گروه‌های عاملی اکسیژن دار (c توزیع گروه‌های عاملی نیتروژن دار (d  نمودار نشان‌دهنده درصد گروه‌های کربنی، اکسیژنی و نیتروژنی.. 82
شکل ‏4‑5 ریزنگار میکروسکوپ الکترونی روبشی از  دانه کیتوسان با بزرگنمایی 70 برابر (a بدون نانو ذرات گرافن عامل دار شده  (b دارای 1% وزنی گرافن عاملدارشده (c دارای 2% وزنی گرافن عامل دار شده و (d دارای 5% وزنی گرافن عامل دار شده. 84
شکل ‏4‑6  ریزنگار میکروسکوپ الکترونی روبشی از  دانه کیتوسان با بزرگنمایی 200برابر (a بدون نانو ذرات گرافن عامل دار شده  (b دارای 1% وزنی گرافن عاملدارشده (c دارای 2% وزنی گرافن عامل دار شده و (d دارای 5% وزنی گرافن عامل دار شده. 84
شکل‏4‑7 تغییرات میزان جذب یون کادمیوم در حضور درصدهای مختلف نانو ذرات عامل دار شده و به دست آوردن میزان بهینه جاذب در pH برابر با 5 و مدت زمان 1 hr و غلظت 50ppm.. 88
شکل‏4‑8 نمودار تغییرات میزان جذب یون کادمیوم توسط جاذب ها با درصدهای متفاوت گرافن عامل دار شده در pH های متفاوت با میزان جاذب 25mg  و مدت زمان 1 hr و غلظت 50ppm.. 90
شکل ‏4‑9 تغییرات میزان جذب یون کادمیوم توسط جاذب ها با درصدهای متفاوت گرافن عامل دار شده در مدت زمان های متفاوت در pH برابر با 7 و میزان جاذب 25mg و غلظت 50ppm.. 91
شکل ‏4‑10 تغییرات میزان جذب یون کادمیوم توسط جاذب ها با درصدهای متفاوت گرافن عامل دار شده در غلظت های متفاوت یون کادمیوم و مدت زمان های 2 ساعت در pH برابر با 7 و میزان جاذب 25mg. …92
فهرست جدول ها
جدول ‏2‑1 روش‌های تولید گرافن با بهره گرفتن از روش‌های پایین به بالا[47] 32
جدول ‏2‑2- راه های تولید ورق های گرافن[47]. 40

موضوعات: بدون موضوع  لینک ثابت
 [ 11:10:00 ب.ظ ]




فهرست مطالب

فصل1 : اسید فسفریک… 0

1-1. اسید فسفریک… 1

1-2.کاربردهای اسید فسفریک… 3

1-3. روش­های تولید اسید فسفریک… 6

1-3-1. فرایند تر. 7

1-3-2. فرایند حرارتی.. 10

1-3-3. مقایسه روش تر و روش خشك… 11

1-4. ناخالصی‌های اسید فسفریک تر. 11

1-5. خالص‌سازی اسید فسفریک تر. 17

1-5-1. خالص‌سازی اسیدفسفریک به روش رسوب دادن. 18

1-5-2. خالص‌سازی اسید فسفریک به روش جذب.. 20

1-5-3. خالص‌سازی اسیدفسفریک به روش های غشایی.. 22

1-5-4. خالص‌سازی اسیدفسفریک به روش کریستالیزاسیون. 24

1-5-5. خالص‌سازی اسیدفسفریک به روش استخراج.. 25

1-6. جمع بندی.. 33

فصل2 : روش جداسازی جزء به جزء با كف… 35

2-1. مقدمه. 36

2-2. روش جداسازی جزء به جزء با کف… 39

2-3. کاهش انرژی آزاد گیبس به دلیل جذب سطحی.. 48

2-4. نفوذ، مرحله کنترلی جذب مولکول­ها در سطح گاز-مایع. 52

2-5. جذب سورفکتانت­های یونی.. 54

2-6. ساختار کف… 55

2-7. مروری بر تاریخچه پیشرفت فرایند و کارهای انجام شده پیشین.. 58

فصل3 : شرح طراحی سامانه جداسازی جزء به جزء با کف و مراحل آزمایشگاهی.. 64

3-1. طراحی سامانه. 65

3-2. مواد اولیه مورد نیاز. 67

3-3. تجهیزات آزمایشگاهی و دستگاه­های آنالیز. 70

3-4. روش انجام آزمایش… 71

3-4-1. پیش تصفیه اسید فسفریک تر. 71

3-4-2. روش انجام آزمایش جداسازی جزء به جزء با کف… 72

3-4-3. پارامترهای مهم در ارزیابی فرایند. 74

فصل4 : بررسی نتایج آزمایشگاهی.. 76

4-1. مقدمه. 77

4-2. نتایج حاصل از خالص سازی اولیه اسید فسفریک… 77

4-3. نتایج حاصل از آزمایشات جداسازی جزء به جزء با کف… 78

4-3-1. تأثیر غلظت سورفکتانت روی کشش سطحی محلول. 79

4-3-2. تأثیر سرعت هوای ورودی روی عمکرد سیستم. 80

4-3-3. تأثیر غلظت سورفکتانت روی عملکرد سیستم. 88

4-3-4. تأثیر زمان بر روی پارامترهای عملکردی سیستم. 90

4-3-5. انتخاب پذیری سورفکتانت­ها نسبت به هر فلز. 92

4-3-6. تأثیر نوع سورفکتانت بر روی فرایند. 94

4-3-7. نتایج آزمایشهای دو مرحله­ ای برای سورفکتانتهای SDS و SFD.. 96

4-3-8. تأثیر غلظت سورفکتانت و سرعت هوای ورودی بر روی اندازه حباب­ها 97

فصل5 : نتیجه گیری و پیشنهادها 103

5-1. نتیجه گیری نهایی.. 104

5-2. مقایسه با کارهای انجام شده پیشین.. 106

5-3. پیشنهادها 108

فصل6 : منابع و مراجع. 109

شکل1-1. ساختار شیمیایی اسید فسفریک… 2

شکل1-2. کاربردهای اسید فسفریک [1] 7

شکل2-1. طبقه بندی روش­های جداسازی به وسیله جذب روی حباب [57] 38

مقالات و پایان نامه ارشد

 

شکل2-2. شکل شماتیک نحوه عملکرد فرایند جزء به جزء کردن کف… 40

شکل2-3. شماتیک یک حباب بالارونده در ستون کف [61] 40

شکل2-4. تأثیر پارامترهای مختلف در زمان تولید و پایداری کف [56] 42

شکل2-5. نمایی از ساده ترین واحد فرایند جداسازی جزء به جزء با کف [59] 43

شکل2-6. جداسازی جزء یه جزء با کف در حالت ساده، الف) نیمه پیوسته، ب) پیوسته [55] 44

شکل2-7. حالت­های مختلف جریان پیوسته، الف) حالت عریان سازی، ب) حالت غنی سازی، پ) حالت ترکیبی [55] 44

شکل2-8. نمایی از حضور سورفکتانت­ها در توده مایع و سطح مشترک گاز- مایع [60]. 49

شکل2-9. نمودار فرضی کشش سطحی بر حسب غلظت سورفکتانت در محلول [55] 50

شکل2-10. نمایی از دولایه الکتریکی در اطراف حباب گاز در یک محلول آبی حاوی سورفکتانت یونی [60] 54

شکل2-11. ساختار سه بعدی کف [69] 56

شکل2-12. تصویر Cyro-SEM از Plateau borders [71] 56

شکل2-13. الف) ساختار کف خشک به دست آمده از آزمایش، ب) ساختار کف خشک حاصل از شبیه سازی کامپیوتری، پ) ساختار کف خیس به دست آمده از آزمایشات، ت) ساختار کف خیس به دست آمده از شبیه سازی کامپیوتری [70]. 57

شکل2-14. بالا کشیده شدن مایع از درون کف با گذشت زمان [60] 58

شکل3-1. شکل شماتیک سامانه کاربردی در فرایند جداسازی جزء به جزء با کف… 66

شکل3-2. تصویر سامانه کاربردی در فرایند جداسازی جزء به جزء با کف، 1) کمپرسور هوا، 2) روتامتر، 3) اسپارگر، 4) محل­های نمونه برداری یا ورود خوراک، 5) ستون کف، 6) ظرف جمع آوری کف… 67

شکل3-3. ساختار SDS. 68

شکل3-4. ساختار شیمیایی KEN10، n=10. 69

شکل3-5. ساختار شیمیایی SFD.. 70

شکل3-6. شماتیک فرایند استخراج به عنوان مرحله پیش تصفیه اسید فسفریک… 72

شکل3-7. تصویر سامانه در حین انجام فرایند. 73

شکل4-1. نمودار کشش سطحی محلول خوراک بر حسب غلظت سورفکتانت KEN10. 79

شکل4-2. نمودار کشش سطحی محلول خوراک بر حسب غلظت سورفکتانت SDS. 79

شکل4-3. نمودار کشش سطحی محلول خوراک بر حسب غلظت سورفکتانت SFD.. 80

شکل4-4. تأثیر سرعت هوا روی مقدار جزء مایع در کف برای سورفکتانت KEN10. 81

شکل4-5. تأثیر سرعت هوا روی درصد حذف فلزات برای سورفکتانت KEN10. 81

شکل4-6. تأثیر سرعت هوا روی نسبت غنی سازی برای سورفکتانت KEN10. 82

از دست رفته برای سورفکتانت KEN10. 82

شکل4-8. تأثیر سرعت هوا روی مقدار جزء مایع در کف برای سورفکتانت SDS. 83

شکل4-9. تأثیر سرعت هوا روی درصد حذف فلزات برای سورفکتانت SDS. 83

شکل4-10. تأثیر سرعت هوا روی نسبت غنی سازی برای سورفکتانت SDS. 84

از دست رفته برای سورفکتانت SDS. 84

شکل4-12. تأثیر سرعت هوا روی مقدار جزء مایع در کف برای سورفکتانت SFD.. 85

شکل4-13. تأثیر سرعت هوا روی درصد حذف فلزات برای سورفکتانت SFD.. 85

شکل4-14. تأثیر سرعت هوا روی نسبت غنی سازی برای سورفکتانت SFD.. 86

از دست رفته برای سورفکتانت SFD.. 86

شکل4-16. تأثیر غلظت سورفکتانت KEN10 بر روی درصد حذف فلزات، درصد اسید فسفریک از دست رفته و نسبت غنی سازی.. 88

شکل4-17. تأثیر غلظت سورفکتانت SDS بر روی درصد حذف فلزات، درصد اسید فسفریک از دست رفته و نسبت غنی سازی.. 89

شکل4-18. تأثیر غلظت سورفکتانت SFD بر روی درصد حذف فلزات، درصد اسید فسفریک از دست رفته و نسبت غنی سازی.. 89

شکل4-19. تأثیر زمان بر روی حذف فلزات برای سورفکتانت KEN10. 91

شکل4-20. تأثیر زمان بر روی حذف فلزات برای سورفکتانت SDS. 91

شکل4-21. تأثیر زمان بر روی حذف فلزات برای سورفکتانت SFD.. 92

شکل4-22. تغییرات درصد حذف فلزات با تغییر غلظت سورفکتانت KEN10. 93

شکل4-23. تغییرات درصد حذف فلزات با تغییر غلظت سورفکتانت SDS. 93

شکل4-24. تغییرات درصد حذف فلزات با تغییر غلظت سورفکتانت SDS. 94

شکل4-25. مقایسه عملکرد سه سورفکتانت در سرعت هوای ورودی و غلظت بهینه هر کدام. 95

شکل4-26. تصویر سامانه در حین انجام فرایند. 98

شکل4-27. تصویر بزرگ­نمایی شده کف حاصل در سامانه. 99

شکل4-28. تغییرات سطح ویژه کف با تغییر غلظت سورفکتانت KEN10. 101

شکل4-29. تغییرات سطح ویژه کف با تغییر غلظت سورفکتانت SDS. 101

شکل4-30. تغییرات سطح ویژه کف با تغییر غلظت سورفکتانت SFD.. 102

جدول1-1. خصوصیات فیزیکی اسیدفسفریک [3] 2

جدول1-2. خصوصیات فیزیکی خلوص­های مختلف اسیدفسفریک [7] 4

جدول1-3. آنالیز اسید فسفریک تهیه شده به روش تر برخی از سنگ‌های معدن در قسمت‌های مختلف جهان [2]. 13

جدول1-4. تأثیر حضور ناخالصی­ها بر روی فرایند [12] 15

جدول3-1. خواص فیزیکی اسید فسفریک تر. 68

جدول3-2. خواص فیزیکی SDS. 69

جدول3-3. خواص فیزیکی KEN10. 69

جدول3-4. خواص فیزیکی SFD.. 70

جدول4-1. مشخصات اسیدفسفریک پس از فرایندهای جذب سطحی و استخراج.. 78

جدول4-2. نتایج آزمایشات دو مرحله­ ای برای سورفکتانت­های SDS و SFD.. 96

جدول4-3. مقادیر میانگین شعاع معادل و سطح ویژه برای سورفکتانت KEN10. 99

جدول4-4. مقادیر میانگین شعاع معادل و سطح ویژه برای سورفکتانت SDS. 100

جدول4-5. مقادیر میانگین شعاع معادل و سطح ویژه برای سورفکتانت SFD.. 100

جدول5-1. مقایسه نتایج کارهای انجام شده پیشین با این پروژه 107

 

چکیده

اسید فسفریک دومین اسید معدنی پر مصرف در دنیا است و به عنوان ماده اولیه در تولید شوینده­ها، محصولات غذایی و دارویی به کار می­رود. بدین لحاظ خالص­سازی اسید فسفریک یکی از نیازهای ضروری صنایع مصرف کننده از آن به شمار می­رود. 95% اسید مصرفی در صنایعی که نیاز به اسید فسفریک خالص دارند به روش حرارتی و تنها 5% آن به روش تر تولید می­ شود. اسید تهیه شده به روش حرارتی دارای خلوص بالا بوده ولی هزینه تولید آن بسیار بالا است. با توجه به افزایش سالانه 3/2 تا 5/2%  نیاز به اسید فسفریک خالص، کاهش هزینه تولید آن یکی از نیازهای روز صنعت به شمار می­رود. برای خالص سازی اسید فسفریک تولید شده به روش تر، معمولاً روش استخراج برای حذف عمده ناخالصی­ها انجام شده و برای بالا بردن بیشتر خلوص آن از روش­هایی مانند اولترافیلتراسیون، جذب سطحی، کریستالیزاسیون و تبادل یون استفاده می­ شود. این روش­ها با معایبی از قبیل سختی انجام فرایند، هزینه بالای تأمین و نگهداری تجهیزات، هزینه بالای رزین­ و نیاز به احیای آن روبه رو هستند. همچنین فرایندهای تبادل یون و جذب سطحی در غلظت­های پایین بازده مناسب­تر هستند.

در این پروژه به منظور حذف ناخالصی­های فلزی از اسید فسفریک تر از روش جداسازی جزء به جزء با کف استفاده شده است که روشی جدید برای انجام این فرایند محسوب می­ شود.

اساس روش جداسازی جزء به جزء با کف، جذب سطحی ناخالصی­ها بر روی کف­های بالارونده از ستون است که همراه با خود، ناخالصی­ها را از درون خوراک خارج کرده و محصولی خالص به جای می­گذارد. این روش علاوه بر بازده بالا، مزیت­هایی از قبیل سهولت در انجام فرایند، هزینه کم عملیاتی و مصرف انرژی پایین را دارد. همچنین به علت عدم استفاده از حلال­های شیمیایی، فرایندی سبز به شمار می­رود.

قابلیت این فرایند در حذف ناخالصی­های اسید فسفریک، تأثیر سرعت هوای ورودی، زمان، غلظت و انتخاب پذیری سورفکتانت­ها نسبت به هر فلز با بهره گرفتن از سورفکتانت­های KEN10، SDS و SFD بررسی شد. همچنین تمامی آزمایش­ها در حالت نیمه پیوسته انجام گردید.

برای سورفکتانت KEN10، سرعت بهینه هوای ورودی برابر یا cm/min 043/0 و غلظت بهینه برابر با 1.2CMC (CMC=0.229 mg/cc) به دست آمد. در این شرایط درصد حذف کلی فلزات برابر با %19/31 ، نسبت غنی سازی برابر با 95/1 و درصد اسید فسفریک از دست رفته برابر با 9% است.

برای سورفکتانت SDS، سرعت بهینه هوای ورودی برابر یا cm/min 020/0 و غلظت بهینه برابر با 2CMC (CMC=0.35 mg/cc) به دست آمد. در این شرایط درصد حذف کلی فلزات برابر با %20/70، نسبت غنی سازی برابر با 39/4 و درصد اسید فسفریک از دست رفته برابر با % 26/8 است.

برای سورفکتانت SFD، سرعت بهینه هوای ورودی برابر یا cm/min 014/0 و غلظت بهینه برابر با CMC (CMC=2.33 mg/cc)  به دست آمد. در این شرایط درصد حذف کلی فلزات برابر با 93/59% ، نسبت غنی سازی برابر با 28/4 و درصد اسید فسفریک از دست رفته برابر با 71/4% است.

همچنین با انجام دو مرحله آزمایش، درصد حذف کلی فلزات برای سورفکتانت­ SDS برابر با 31/95% و برای سورفکتانت SFD برابر با %09/91 به دست آمد.

کلمات کلیدی:  اسید فسفریک، جزء به جزء کردن کف، حذف فلزات، نونیل فنل اتوکسیلات، سدیم دودسیل سولفات، دی سدیم لورت 3 سولفوسوکسینات.

فصل اول

 

اسید فسفریک

کشف فسفر توسط برانت[1] در سال 1669 سبب شد تا محصول احتراق آن، فسفر پنتا اکسید(P2O5) به زودی شناخته شود. در سال 1694، بویل[2] برای نخستین بار از انحلال P2O5 در آب توانست اسید فسفریک را فراهم آورد و در سال 1769 میلادی موفق شدندکلسیم فسفات را که از اجزای اصلی استخوان است، از آن جدا نمایند. حدود 30 سال بعد، به نقش مفید کلسیم فسفات در کشاورزی و افزایش رشد نباتات پی بردند. به مرور زمان اهمیت و موارد مصرف اسید فسفریک شناخته شد [1].

موضوعات: بدون موضوع  لینک ثابت
 [ 11:09:00 ب.ظ ]




فهرست مطالب

فصل اول

مقدمه و بررسی منابع

1-1- مقدمه……………………………………. 3

1-2- آرسنیک…………………………………… 4

1-3- روش های حذف آرسنیک از آب…………………… 6

1-3-1- روش فرایند غشایی اسمز معکوس……………. 6

1-3-2- روش انعقاد و لخته سازی-ترسیب…………… 7

1-3-3- روش جذب سطحی…………………………. 8

1-4- تعریف جذب سطحی……………………………. 9

1-4-1- مهمترین عوامل موثر بر جذب سطحی…………… 10

1-4-1-1-  مساحت سطح جذب…………………… 10

1-4-1-2- ماهیت ماده جذب شونده و جاذب……….. 11

1-4-1-3-  pH…………………………….. 11

1-4-1-4- دما…………………………….. 11

1-4-2- اساس پدیده جذب سطحی………………………. 12

1-4-3- مکانیسم فرایند جذب……………………… 13

1-4-3-1- جذب سطحی فیزیکی………………………. 14

1-4-3-2- جذب سطحی شیمیایی…………………….. 15

1-4-4- جاذب های مورد استفاده در جذب سطحی………… 16

1-5- متداولترین جاذب های مورد استفاده در حذف آرسنیک. 17

1-5-1- کیتوسان و نانوکامپوزیت های آن…………. 17

1-5-2- آلومینای فعال……………………….. 19

1-5-3- نانوذرات آهن صفر ظرفیتی………………. 20

1-6- ایزوترم های جذب سطحی……………………… 20

1-6-1- ایزوترم جذب لانگمویر………………….. 21

1-6-2- ایزوترم فروندلیچ…………………….. 23

1-7- سنتیک جذب……………………………….. 24

1-7-1- مدل سنتیکی شبه مرتبه اول……………… 25

1-7-2- مدل سنتیکی شبه مرتبه دوم……………… 25

1-7-3- مدل نفوذ درون ذره­ای………………….. 26

1-8- برخی از مواد دارای خاصیت آنتی باکتریال……… 27

1-8-1- کیتوسان…………………………….. 27

1-8-2- یون های مس و کمپلکس کیتوسان- مس……….. 28

1-8-3- نانوذرات نقره……………………….. 29

1-9- مروری بر کارهای انجام شده…………………. 30

1-10- اهداف پروژه حاضر………………………… 34

فصل دوم

مواد و روش ها

2-1- مواد شیمیایی مورد استفاده…………………. 39

2-2- جاذب های مورد استفاده برای حذف آرسنیک (III)……. 42

2-3- تهیه جاذب ها…………………………….. 42

2-3-1-  روش تهیه کامپوزیت کیتوسان/نانوآلومینا…. 42

2-3-2- روش سنتز نانو جاذب کیتوسان/آلومینا اصلاح شده با مس(II) 42

2-4- دستگاه های مورد استفاده…………………… 43

2-5- بررسی خصوصیات جاذب ها…………………….. 43

2-6- روش تهیه محلول استاندارد آرسنیت……………. 44

2-7- آزمایشات جذب دسته ای (بچ)…………………. 45

2-7-1- بررسی مقدار بهینه نانوآلومینا در کامپوزیت Chitosan/nano-Al2O3 جهت حذف As(III)…………………………………. 45

2-7-2- بررسی نسبت بهینه مس به کیتوسان در نانوجاذب Cu-chitosan/nano-Al2O3 جهت حذف As(III)   …………………………….. 46

2-7-3- بررسی تاثیر غلظت اولیه آرسنیک بر فرایند جذب سطحی (مطالعات ایزوترم جذب)…………………………. 46

2-7-4- بررسی تاثیر زمان تماس بر فرایند جذب سطحی As(III) (مطالعات سنتیک جذب)…………………………………… 47

2-8- بازجذب و استفاده مجدد از جاذب ها…………… 47

2-9- روش آنالیز………………………………. 48

2-10- بررسی اثر تداخل یون های رایج……………… 48

2-11- بررسی خاصیت ضد میکروبی جاذب ها……………. 48

فصل سوم

نتایج و بحث

3-1- بررسی ساختار و ویژگیهای جاذبهای کیتوسان، کیتوسان/نانوآلومینا و مس-کیتوسان/نانوآلومینا…….. 53

3-1-1- ویژگی های مورفولوژی جاذب ها…………….. 53

3-1-2- مطالعاتEDX   جاذب ها…………………… 56

3-1-3- مطالعاتAFM   جاذب ها…………………… 57

3-1-4- مطالعاتXRD   جاذب ها…………………… 58

3-1-5- مطالعات FTIR  جاذب ها ………………….. 61

3-2- ساختار فرضی نانوکامپوزیت کیتوسان/آلومینا……. 66

3-3- بررسی پارامترهای موثر بر جذب As(III) به روش ناپیوسته در دمای محیط و pH خنثی….. 69

3-3-1- بررسی مقدار بهینه نانوذرات آلومینا در Chitosan/nano-Al2O3 جهت حذف As(III)…… 69

پایان نامه

 

3-3-2-  بررسی نسبت بهینه مس به کیتوسان در نانوجاذب اصلاح شده جهت حذف As(III)……… 70

3-3-3- بررسی تاثیر غلظت اولیه As(III)بر فرایند جذب سطحی 71

3-3-4- بررسی تاثیر زمان تماس بر فرایند جذب سطحی As(III) 73

3-4- ایزوترم های جذب سطحی……………………… 77

3-4-1- بررسی ایزوترم های جذب As(III) توسط جاذب کیتوسان.. 77

3-4-1-1- بررسی ایزوترم لانگمویر………………… 77

3-4-1-2- بررسی ایزوترم فروندلیج……………….. 78

3-4-2- بررسی ایزوترم های جذب As(III) توسط نانوکامپوزیت Chitosan/nano-Al2O3 81

3-4-2-1- بررسی ایزوترم لانگمویر………………… 81

3-4-2-2- بررسی ایزوترم فروندلیج……………….. 82

3-4-3- بررسی ایزوترم های جذب As(III) توسط نانوجاذب Cu-chitosan/nano-Al2O3……… 84

3-4-2-1- بررسی ایزوترم لانگمویر………………… 84

3-4-2-2- بررسی ایزوترم فروندلیج……………….. 85

3-5- سنتیک­های جذب سطحی………………………… 87

3-5-1- مدل سنتیکی شبه مرتبه اول……………….. 88

3-5-2- مدل سنتیکی شبه مرتبه دوم……………….. 91

3-5-3- مدل نفوذ درون ذره­ای……………………. 95

3-6- اثر pH  اولیه…………………………….. 98

6-7- اثر تداخل یون های رایج…………………… 100

3-8- قابلیت استفاده مجدد از جاذب………………. 101

3-9- حذف آرسنیک از آب های طبیعی………………. 101

3-6- فعالیت ضدمیکروبی………………………… 102

4- نتیجه گیری……………………………….. 104

5- پیشنهادات………………………………… 106

6- منابع……………………………………. 107

فهرست اشکال

شکل 1-1-  مراحل جذب در سطوح درونی…………………. 13

شکل 1-2- نمودار خطی ایزوترم جذب لانگمویر…………. 22

شکل 1-3-  مقایسه نمودارهای ایزوترم جذب فروندلیچ بر اساس مقادیر n 24

شکل 3-1- تصاویر میکروسکوپ الکترونی روبشی از نمونه جاذب های  (a کیتوسان  (b نانوکامپوزیت Chitosan/nano-Al2O3   و (c  نانوکامپوزیت Cu-chitosan/nano-Al2O3 …. 54

شکل 3-2- میکروگراف های SEM  از   (a کیتوسان خالص     (b نانوکامپوزیت  Chitosan/nano-Al2O3     (c نانوکامپوزیت  Cu-chitosan/nano-Al2O3      پس از جذب………. 55

شکل3-3- آنالیز EDX مربوط به نانوکامپوزیت Cu-chitosan/nano-Al2O3. 56

شکل 3-4- تصاویر AFM  از سطح نانوکامپوزیت Cu-chitosan/nano-Al2O3 57

شکل 3-5- پراش اشعه X  نمونه نانوذرات آلومینا…….. 58

شکل 3-6- پراش اشعه X  نمونه کیتوسان…………….. 59

شکل 3-7- پراش اشعه ایکس نمونه نانوکامپوزیت Chitosan/nano-Al2O3. 60

شکل 3-8- پراش اشعه ایکس نمونه نانوکامپوزیت Cu-chitosan/nano-Al2O3 60

شکل 3-9- فازهای کریستالی (a Chitosan/nano-Al2O3  و (b Cu-chitosan/nano-Al2O3  با توجه به الگوهای XRD آنها… 61

شکل3-10- طیف FT-IR مربوط به کیتوسان………………. 62

شکل3-11- طیف FT-IR مربوط به نانوکامپوزیت Chitosan/nano-Al2O3. 63

شکل3-12- طیف FT-IR  مربوط به نانوکامپوزیت Cu-chitosan/nano-Al2O3 64

شکل3-13- طیف FT-IR  مربوط به نانوکامپوزیت Cu-chitosan/nano-Al2O3 پس از جذب 65

شکل 3-14- طیف FTIR         (a کیتوسان خالص       (b  Chitosan/nano-Al2O3         (c  و  (d  نانوجاذب   Cu-chitosan/nano-Al2O3   قبل و   پس از جذب. 66

شکل 3-15- ساختار فرضی نانو کامپوزیت کیتوسان/آلومینا. 67

شکل 3-16- ساختار کمپلکس کیتوسان-مس (a) مدل پل (b) مدل آویز 68

شکل 3-17- تاثیر غلظت اولیه As(III)  بر ظرفیت جذب سطحی جاذب های مورد استفاده………. 72

شکل 3-18- داده های سنتیک برای جذب As(III)  بر روی  جاذب های مورد استفاده………. 75

شکل 3-19-  فرم خطی ایزوترم لانگمویر برای جاذب کیتوسان خالص 78

شکل 3-20-  فرم خطی ایزوترم فروندلیچ برای جاذب کیتوسان خالص 79

شکل 3-21-  فرم خطی ایزوترم لانگمویر برای نانوکامپوزیت Chitosan/nano-Al2O3…….. 81

شکل 3-22- فرم خطی ایزوترم فروندلیچ برای نانوکامپوزیت Chitosan/nano-Al2O3.. 83

شکل 3-23-  فرم خطی ایزوترم لانگمویر برای نانوجاذب  Cu-chitosan/nano-Al2O3 85

شکل 3-24- فرم خطی ایزوترم فروندلیچ برای نانوجاذب  Cu-chitosan/nano-Al2O3 86

شکل 3-25-  مدل سنتیک شبه نوع اول برای جذب As(III) روی جاذب کیتوسان 88

شکل 3-26-  مدل سنتیک شبه نوع اول برای جذب As(III)  روی نانو جاذب Chitosan/nano-Al2O3………… 89

شکل 3-27-  مدل سنتیک شبه نوع اول برای جذب As(III) روی Cu-chitosan/nano-Al2O3 90

شکل 3-28-  مدل سنتیک شبه مرتبه دوم برای جذب As(III) روی کیتوسان 91

شکل 3-29- مدل سنتیک شبه مرتبه دوم برای جذب As(III) روی Chitosan/nano-Al2O3 92

شکل 3-30- مدل سنتیک شبه مرتبه دوم برای جذب As(III) روی Cu-chitosan/nano-Al2O3………. 93

شکل 3-31- مدل نفوذ درون ذره­ای برای جذب As(III) روی کیتوسان 95

شکل 3-32- مدل نفوذ درون ذره­ای برای جذب As(III) روی Chitosan/nano-Al2O3 96

شکل 3-33- مدل نفوذ درون ذره­ای برای جذب As(III) روی Cu-chitosan/nano-Al2O3 96

شکل 3-34- اثر  pH  اولیه روی جذب As(III) توسط کیتوسان خالص،    Chitosan/nano Al2O3   و    Cu-chitosan/nano Al2O3……. 99

شکل3-35- تعیین pHpzc  برای جاذب های کیتوسان ، Chitosan/nano Al2O3  و   Cu-chitosan/nano Al2O3……. 99

شکل 3-36- ظرفیت جذب As(III) در حضور آنیون های تداخل (500 mg/l). شرایط آزمایش: غلظت آرسنیک سه ظرفیتی 50 mg/l و مقدار جاذب 2 g/l 100

شکل 3-37- بازده جذب  Cu-chitosan/nano-Al2O3  نسبت به چرخه های بازسازی 101

شکل3-38- نمودار MIC  جاذب ها در برابر گونه های مختلف میکروبی 104

فهرست جداول

جدول2-1- مشخصات مهم کیتوسان……………………. 39

جدول 2-2- مشخصات مهم نانو ذرات آلومینا………….. 40

جدول 2-3- مشخصات مهم سدیم آرسنیت……………….. 41

جدول3-1- درصد اتمی و وزنی عناصر مورد استفاده در نانوکامپوزیت Cu-chitosan/nano-Al2O3…………………………………. 57

جدول 3-2- بررسی تاثیر نسبت آلومینا به کیتوسان بر خواص جذبی Chitosan/nano-Al2O3…………………………………. 69

جدول 3-3- بررسی نسبت مس به گلوکز آمین بر روی جذب جاذب Cu-chitosan/nano-Al2O3…………………………………………. 70

جدول3-4- بررسی تاثیر غلظت اولیه As(III)بر فرایند جذب سطحی جاذب کیتوسان……………………………………………. 71

جدول3-5- بررسی تاثیر غلظت اولیه As(III) بر فرایند جذب Chitosan/nano-Al2O3……………………………………………. 71

جدول3-6- بررسی تاثیر غلظت اولیه As(III)  بر فرایند جذب  Cu-chitosan/nano-Al2O3…………………………………………. 72

جدول3-7- بررسی تاثیر زمان تماس بر فرایند جذب As(III)  توسط  کیتوسان……………………………………………. 74

جدول3-8- بررسی تاثیر زمان تماس بر فرایند جذب As(III)  توسط Chitosan/nano-Al2O3…………………………………………. 74

جدول3-9- بررسی تاثیر زمان تماس بر فرایند جذب آرسنیک توسط Cu-chitosan/nano-Al2O3…………………………………. 75

جدول3-10-  بررسی ایزوترم لانگمویر جاذب کیتوسان خالص.. 77

جدول3-11- پارامترهای ایزوترم لانگمویر برای جذب As(III) روی کیتوسان خالص………………………………………… 78

جدول3-12-  بررسی ایزوترم فروندلیچ جاذب کیتوسان خالص. 80

جدول3-13- پارامترهای ایزوترم فروندلیچ برای جذب As(III) روی کیتوسان خالص………………………………………… 80

جدول3-14-  بررسی ایزوترم لانگمویر نانوکامپوزیت Chitosan/nano-Al2O3 81

جدول 3-15-  پارامترهای ایزوترم لانگمویر  برای جذب As(III)  روی Chitosan/nano-Al2O3…………………………………………. 82

جدول3-16-  بررسی ایزوترم فروندلیچ نانو جاذب Chitosan/nano-Al2O3 82

جدول 3-17- پارامترهای ایزوترم فروندلیچ برای جذب As(III) روی Chitosan/nano-Al2O3…………………………………………. 83

جدول3-18-  بررسی ایزوترم لانگمویر نانو جاذب Cu-chitosan/nano-Al2O3 84

جدول 3-19-  پارامترهای ایزوترم لانگمویر برای جذب As(III)  روی Cu-chitosan/nano-Al2O3…………………………………. 85

جدول3-20-  بررسی ایزوترم فروندیچ نانو جاذب Cu-chitosan/nano-Al2O3 86

جدول 3-21- پارامترهای ایزوترم فروندلیچ برای جذب As(III) روی Cu-chitosan/nano-Al2O3…………………………………. 86

جدول3-22- بررسی سنتیک شبه مرتبه اول برای جاذب کیتوسان 88

جدول3-23- بررسی سنتیک شبه مرتبه اول برای جاذب Chitosan/nano-Al2O3 89

جدول3-24- بررسی سنتیک شبه مرتبه اول برای جاذب Cu-chitosan/nano-Al2O3 90

جدول3-25- بررسی سنتیک شبه مرتبه دوم برای جاذب کیتوسان 91

جدول3-26- بررسی سنتیک شبه مرتبه دوم برای جاذب Chitosan/nano-Al2O3 92

جدول3-27- بررسی سنتیک شبه مرتبه دوم برای جاذب Cu-chitosan/nano-Al2O3 93

جدول 3-28- پارامترهای مدل های سنتیکی شبه مرتبه اول و دوم برای جذب As(III) روی کیتوسان……………………………… 94

جدول 3-29- پارامترهای  مدل های سنتیکی شبه مرتبه اول و دوم برای جذب As(III)  روی نانوکامپوزیت Chitosan/nano-Al2O3 …………….. 94

جدول3-30- پارامترهای مدل های سنتیکی شبه مرتبه اول و دوم برای جذب  As(III)  روی نانوکامپوزیت                       Cu-chitosan/nano-Al2O3  94

جدول 3-31- پارامترهای مدل­ نفوذ درون ذره­ای برای جذب As(III) روی کیتوسان، Chitosan/nano-Al2O3  و   Cu-chitosan/nano-Al2O3………… 97

جدول 3-32- پارامترهای فیزیکوشیمیایی نمونه آب طبیعی ( جمع آوری شده از آب زیرزمینی چاه از یک منطقه روستایی مراغه، ایران) مشخص شده با As(III)….. 102

جدول 3-33- MIC جاذب ها در برابر گونه های مختلف میکروبی 103

چکیده

هدف از این کار افزایش کارایی جذب کیتوسان نسبت به As(III)، گونه بسیار سمی و متداول آرسنیک در آب های زیرزمینی، و افزایش فعالیت ضدمیکروبی آن در pH خنثی، pH آب های طبیعی، است. بنابراین نانوکامپوزیت مس-کینوسان/آلومینا تهیه و به عنوان جاذب جدید برای حذف As(III) مورد استفاده قرار گرفت. ویژگی های جاذب تهیه شده توسط میکروسکوپ الکترونی روبشی(SEM) ، طیف سنجی انرژی متفرق کننده اشعه X (EDX)، میکروسکوپ نیروی اتمی (AFM)، طیف سنجی مادون قرمز(FTIR) و  طیف سنجی پراش اشعه ایکس (XRD) بررسی شد. جاذب اصلاح شده مورفولوژی سطح متخلخل تری را نسبت به کیتوسان خالص نشان داد. تصاویر فاز  AFM پراکندگی نانوذرات آلومینا در ماتریس پلیمر را نشان داد. نتایج FTIR، EDX و XRD مشخص کردند که یون های Cu2+ با گروه های آمین روی سطح کیتوسان کمپلکس تشکیل داده است. رفتار جذب As(III) بر روی Cu-chitosan/nano-Al2O3، chitosan/nano-Al2O3 و کیتوسان خالص با بهره گرفتن از سنتیک جذب و مطالعات ایزوترم در دمای اتاق بررسی شد. داده های جذب برای سه نوع جاذب توسط هر دو مدل لانگمویر و فروندلیچ بخوبی پردازش شدند. داده های سنتیکی نشان دادند که مطابقت خوبی با مدل سنتیکی شبه نوع دوم دارند. جاذب اصلاح شده ظرفیت جذب و سرعت اولیه جذب بالاتری را ارائه کرد. فعالیت ضدمیکروبی جاذب ها توسط روش حداقل غلظت بازدارنده (MIC) مورد مطالعه قرار گرفت. فعالیت ضدمیکروبی  Cu-chitosan/nano-Al2O3  بسیار بالاتر از chitosan/nano-Al2O3  و کیتوسان خالص بود.

فصل اول

موضوعات: بدون موضوع  لینک ثابت
 [ 11:09:00 ب.ظ ]