کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو



 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 



کلید واژه ­ها: سلول ­های بنیادی مزانشیم مغز استخوان، اسید بوریک، قابلیت حیات، آنزیم­ های متابولیکی، تمایز

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  فصل اول: کلیات و هدف
1 1-1  سلول­های بنیادی ………………………………………………………………………
1 1-1- 1 تعریف سلول­های بنیادی…………………………………………..
2 1-1-2 ویژگی خودنوزایی سلول بنیادی…………………….
3 1-1-3 دسته­بندی سلول­های بنیادی بر اساس توان تمایزی آنها ……………………………………………………….
4 1-1-4 دسته­بندی سلول­های بنیادی بر اساس منشا ……………………………………………………..
4 1-1-4-1 سلول­های بنیادی جنینی…………………………………………………
6 1-1-4-2 سلول بنیادی خون بند ناف………………………………………..
7 1-1-4-3 سلولهای بنیادی بزرگسالان………………………..
10 1-1-5 سلول­های مغز استخوان ……………………………….
10 1-1-5-1 سلول­های بنیادی خونساز…………………………..
11 1-1-5-2 سلول مزانشیم مغز استخوان……………………………..
12 1-2  تاریخچه سلول بنیادی مزانشیم ………………………………..
13 1-2-1 مورفولوژی سلول بنیادی مزانشیم …………………………..
14 1-2-2 کنام سلول بنیادی مزانشیم مغز استخوان ……………………………………..
15 1-2-3 ویژگی­های اساسی سلول بنیادی مزانشیم …………………….
16 1-3  کاربردهای سلول بنیادی مزانشیم در درمان ………………..
17 1-3-1 ترمیم استخوان ……………………………………………….
17 1-4 بافت استخوان ……………………………………………..
20 1-5 استئوژنز(استخوان‌سازی) ……………………………..
21 1-5-1 استخوان­سازی اولیه یا جنینی ………………………..
23 1-5-2 استخوان­سازی ثانویه ………………………………………………..
23 1-5-3 دوباره­سازی استخوان …………………………………………..
24 1-6 هتروژن بودن کشت سلول بنیادی مزانشیمی ……………..
25 1-6-1 شرایط آزمایشگاهی تمایز مزانشیم به استخوان ………………………………………………
25 1-6-2 تنظیم مولکولی تمایز به استخوان سلول‌های بنیادی مزانشیمی ……………………………………………..
27 1-6-3 نقش سیگنال دهی Wnt در تمایز سلول های بنیادی مزانشیم به استخوان …………………………
29 1-7 عنصر بور ……………………………………..
30 1-7-1 مشتقات بور ………………………………………………………..
32 1-7-2 فراوانی عنصر بور ………………………………………
32 1-7-3 تاریخچه مصرف بور ………………………………..
33 1-7-4 منابع طبیعی بور…………………………………
34 1-7-5 اثرات بور برفلزات ضروری برای متابولیزم در جانوران ………………………………………….
34 1-7-5-1 تاثیر بور بر فیزیولوژی بدن …………………………………..
36 1-7-5-2 تاثیر بور بر روی سرین پروتئازها ……………………………………………………..
37 1-7-6 کاربرد بور در دارو ………………………………………………
37 1-7-7 سرطان ……………………………………………………….
39 1-8 اثرات بور روی استخوان …………………………………….
40 1-9 بور و خون ………………………………………………………..
41 1-10 بور در گیاهان …………………………………………………………
42 1-11 سمیت بور …………………………………………….
44 1-12 محدوده استفاده بور ………………………………………………
45 مروری بر مطالعات گذشته ………………………………………
47 هدف مطالعه ……………………………………………………………..
   
  فصل دوم: مواد و روش­ها
50 2-1  انتخاب رت ……………………………………………………………….
50 2-2 جدا سازی وتكثیر سلول‌های بنیادی مزانشیم مغز استخوان …………………………………..
52 2-2-1 اجرای پاساژ ………………………………
54 2-3 اثبات مزانشیم بودن سلول های استخراج شده ……………………………………….
54 2-3-1 تمایز به استخوان …………………………………………………………….
55 2-4 بررسی توان زیستی سلولها (دوز فایندینگ) ………………………………
55 2-4-1  رنگ آمیزی تریپان بلو ………………………………………………..
57 2-4-2  سنجش تترازولیوم (MTT) …………………………………………………….
57 2-4-2-1 مراحل انجام سنجش MTT)غیر استئوژنیک( …………………………………………………………………..
58 2-4-2-2  ترسیم منحنی استاندارد با بهره گرفتن از سنجش تترازولیوم …………………………………………………
59 2-4-2-3 مراحل انجام تست MTT استئوژنیک …………………….
60 2-5  انتخاب دوز مورد نظر ………………………………………..
60 2-6 بررسی توان تکثیری سلول­های بنیادی مزانشیم …………….
61 2-6-1 سنجش توانایی کلونی­زایی ………………………………
63 2-6-2 محاسبه تعداد دوبرابرشدگی جمعیتی(PDN) ………………..
62 2-7 بررسی تغییرات مورفولوژیکی با بهره گرفتن از رنگ آمیزی فلوروسنت ……………………………………………..
65 2-8 آزمون­های بیوشیمیایی در شرایط تمایز و غیرتمایزی ………………………………………….
65 2-8-1تیمار و استخراج عصاره سلولی ………………………………
65 2-8-2 بررسی فعالیت آنزیم­ها ………………………………………
66 2-8-2-1 تهیه ی نمودار استاندارد برای آزمایش لاوری …………………………………….
66 2-8-2-2 ترانس آمینازها …………………………………
68 2-8-2-3 لاکتات دهیدروژناز…………………………………
70 2-8-2-4 آنزیم آلکالین فسفاتاز ………………………………………………
72 2-8-3 سنجش میزان رسوب ماتریكس معدنی به كمك رنگ آلیزارین رد در سلول های استئوژنیک
72 2-8-3-1  رسم منحنی استاندارد برای رنگ آمیزی آلیزارین رد ………………………..
73 2-8-3-2  بررسی رسوب ماتریکس استخوانی در نمونه های تیمار شده …………………………………
73 2-8-4  بررسی الکترولیت ها )کلسیم، سدیم و پتاسیم( …………………….
73 2-8-4-1 بررسی میزان کلسیم داخل سلولی با بهره گرفتن از کیت کلسیم به روش رنگ سنجی …………
74 2-8-4-1-1 مراحل  انجام تست کلسیم در سلول های تمایز یافته )استئوبلاست( …………………………..
75 2-8-4-1-2 مراحل انجام اندازه ­گیری میزان کلسیم …..
76 2-8-4-2 اندازه ­گیری غلظت سدیم و پتاسیم سلول استئوژنیک و غیر استئوژنیک …………………………..
81 2-9 تجزیه و تحلیل آماری داده ها …………..
   
  فصل سوم: نتایج
82 3-1 الف: نتایج مرحله اول …………………………………
82

3-1-1  رشد و تکثیر سلولهای بنیادی مزانشیم ……………………

مقالات و پایان نامه ارشد

 

82 3-1-2  اثر اسید بوریک بر توانایی زیستی سلولهای بنیادی مزانشیم مغز استخوان رت ……………………
85 3-1-3  بررسی مورفولوژی سلولهای تیمار شده ………………
87 3-1-4  نتایج توانایی کلونی زایی، تعداد دوبرابر شدگی جمعیت سلول ……………………………………………..
89 3-1-5  اثر اسید بوریک بر فاکتورهای بیوشیمیایی ……
91 3-1-6  میزان الکترولیتها…………………………………………..
92 3-2  نتایج اثر دوزهای انتخابی اسید بوریک بر شاخص های تمایز به استئوبلاست …………………………..
92 3-2-1 توانایی زیستی سلولها در روند تمایز ………………………..
93 3-2-2 بررسی تغییرات مورفولوژیکی با بهره گرفتن از رنگ­آمیزی فلورسنت در نمونه­های  استئوژنیک
96 3-2-3 بررسی اثر اسید بوریک بر فاکتورهای بیوشیمیایی سلولهای تمایز یافته ………………………………..
97 3-2-3-1  میزان معدنی شدن ماتریکس با سنجش رنگ آلیزارین رد ………………………………………………..
100 3-2-3-2  میزان رسوب کلسیم ……………………………………..
101 3-2-3-3  بررسی فعالیت آنزیم آلکالین فسفاتاز ………….
101 3-2-3-2 بررسی فعالیت آنزیم آسپارتات و آلانین ترانس آمیناز ………………………………………………………..
103 3-2-3-5  بررسی فعالیت لاکتات دهیدروژناز ………………..
103 3-2-3-6  بررسی سطح الکترولیت های سلولهای استئوژنیک ……………………………………………
 

 

 

 

  فصل چهارم: بحث و نتیجه ­گیری
105 4-3 اثر اسیدبوریک بر سلولهای مزانشیم ………………………..
105 4-1-1اثر اسید بوریک بر توانایی زیستی و توان تکثیر سلولها ……………………………………………………
108 4-1-2 بررسی تاثیر اسید بوریک بر تغییرات مورفولوژیکی …………………………………………………………………
109 4-1-3 اثر اسید بوریک بر فاکتورهای بیوشیمیایی ….
113 4-1-4  اثر اسید بوریک بر فعالیت آنزیمهای متابولیکی ………………………………………
116 4-2  اثر اسیدبوریک بر تمایز سلولی ………………………………
116 4-2-1 توانایی زیستی …………………………………….
119 4-2-2 بررسی سطح الکترولیت ها …………………………………………….
120 4-2-3  بررسی فاکتورهای استئوژنیک …………………….
124 4-2-4  بررسی اثر اسید بوریک بر آنزیم های متابولیکی …………..
127 4-2-5  تاثیر اسید بوریک بر مورفولوژی سلولهای تمایزی ……………………………………………..
128 4-3  نتیجه گیری ………………………………………………………
129 4-4 پیشنهادات …………………………………………………………….
   
  فصل پنجم:ضمیمه
131 5-1 روش تهیه محیط کشت ………………………………………………….
131 5-2  تهیه ی فسفات بافر سالین PBS …………………………….
132 5-3 تهیه ی فسفات بافر سالین مثبت PBS+………………………
132 5-4 روش تهیه محیط تمایزی استئوژنیک …………………………..
133 5-5  آماده سازی آلیزارین رد ……………………………………………
133 5-6  روش تهیه محلول تریپان­بلو 4/0 درصد …………………………….
133 5-7  تهیه کریستال ویولت ………………………………………
133 5-8 روش تهیه محلول   MTT………………………………….
133 5-9  روش تهیه بافر شست و شو(  ( Tris-Hcl-NaCl…………………..
133 5-10 مواد لازم و روش تهیه بافر  استخراج ( Tris-Hcl) …………
134 5-11 روش تهیه بافر ARS ……………….
134 5-12 روش تهیه محلول BSA ……………………………
134 5-13   روش تهیه محلول کمپلکس لاوری …………
135 5-14  روش تهیه بافر استخراج کلسیم ………………………….
135 5-15 روش تهیه رنگ های فلورسنس هوخست و آکریدین اورنژ ….

تعریف سلول­های بنیادی

   به طور نرمال سلول­های تخصص یافته بدن مثل سلول پوست یا سلول عصبی در تمام دوره زندگی به همان صورت باقی می­مانند، اما در بدن سلول­های دیگری به نام سلول­های بنیادی وجود دارند که توانایی تبدیل به سلول­های دیگری چون سلول قلب، عصبی، ماهیچه و ……. را دارا می­باشند (1).

سلول­های بنیادی[1] سلول­هایی غیر تخصصی[2] در بدن هستند که قابلیت تمایز به سلول­های تخصص­یافته را با کسب کلیه اعمال سلولی تخصصی دارند. این سلول­ها دارای دو ویژگی اساسی یعنی توانایی تقسیم و تولید سلول­هایی با خواص یکسان (خودنوزایی)[3]و ایجاد انواع سلول­های تمایزیافته می‌باشند (شکل 1-1)(1).

به دلیل این­که این سلول­ها منشا تولید بقیه انواع سلول­ها هستند واژه بنیادی در مورد آنها به کار می­رود به عبارت دیگر یک سلول بنیادی، سلولی است که به دلیل توانایی کسب کلیه اعمال تخصصی قابلیت تبدیل به سلول­های تخصص یافته را دارد. این سلول­ها جهت تمایز نیازمند دریافت سیگنال هستند. قاعدتاً یک سلول بنیادی تا قبل از دریافت یک سیگنال جهت تکامل به سلول تخصصی به صورت غیرتخصصی باقی می­ماند. سلول­های بنیادی در بدن انسان ویژگی تمایز به بسیاری از سلول­ها را دارند. همچنین به عنوان سیستم ترمیم به خدمت گرفته می­شوند زیرا که توانایی تقسیم بدون محدودیت برای جایگزینی دیگر سلول­ها را دارا می­باشند. وقتی یک سلول بنیادی تقسیم می­ شود هر سلول جدید بدست آمده این پتانسیل را دارد که سلول بنیادی باقی بماند یا به سلول تخصصی جدید مثل سلول­های خونی و … تمایز یابد (1).

شکل1-1: توانائی خودنوزائی و  پتانسیل تمایز در سلولهای بنیادی (www.cellingbiosciences.com)

 1-1-2 ویژگی خودنوزایی سلول بنیادی

   تکثیر یا خودتجدیدی، توانایی سلول­ها در تولید نسخه­های یکسان از خود، توسط تقسیم میتوز در یک دوره زمانی مشخص است به صورتی که خصوصیات ژنتیکی و کاریوتایپی در سلول­های دختری عینا شبیه سلول­های مادری باقی می­ماند.

خودتجدیدی سلول­ها بنیادی تحت تاثیر سیگنال­های درونی سلول بنیادی که به صورت تقسیم متقارن و نامتقارن است، قرار دارد. علاوه بر این سیگنال­های درونی، خودتجدیدی سلول­های بنیادی تحت تاثیر عوامل محیطی چون آسیب یا صدمه نیز می­باشد و تحت تاثیر این شرایط یک سلول بنیادی ممکن است دو سلول دختری ایجاد کند که یا به صورت سلول­های بنیادی باقی می­مانند یا متمایز می­شوند (2).

1-1-3 دسته­بندی سلول­های بنیادی بر اساس توان تمایزی آن­ها:

   سلول های بنیادی بر اساس توان تمایزی به صورت زیر دسته بندی می شوند:

الف) همه توان[4]واژه Totipotent از دو قسمت Toti= همه، potent= توانایی تشکیل شده است. از جمله این سلول­ها می­توان بلاستومرهای یک جنین دو سلولی را نام برد که قادر است همه سلول­های بدن یک فرد کامل را بسازد. این سلول‌ها می‌توانند به انواع سلول‌های جنینی و برون جنینی تمایز پیدا کنند و اندام‌های قابل زیستی را ایجاد نمایند.

ب) پر توان[5]این نوع سلول­ها قادر به ساخت غالب یا همه سلول­های فرد هستند. به عنوان مثال سلول­های بنیادی جنینی تحت شرایط خاص می­توانند یک فرد را بسازند ولی قادر به ایجاد سلول­های جفت نیستند. سلول‌های بنیادی جنینی و سلول‌های پر توان القایی جز این دسته از سلول‌های بنیادی می‌باشند.

پ)چند توان[6]: سلولهای بنیادی هستند كه به تعداد محدودتری از انواع سلول‌ تمایز پیدا می­‌کنند (در بافت­های بزرگسال نظیر مغز، مغز استخوان، كبد و… وجود دارند).

ت) یک توان[7]: توانایی ایجاد یک نوع سلول را دارند ولی توانایی خود نوزایی خود را حفظ کرده ­اند. مانند سلول­های بنیادی اسپرماتوگونی که توانایی تولید اسپرم را دارند (شکل 1-2) (3).

 

شکل 1-2: دسته­بندی سلول­های بنیادی براساس پتانسیل تمایزی آنها (www. njavan.com).

1-1-4 دسته­بندی سلول­های بنیادی بر اساس منشا

   سلول­های بنیادی بر اساس منشا به سه دسته اصلی تقسیم ­بندی می­شوند

1-1-4-1 سلول­های بنیادی جنینی

  کشت موفقیت آمیز آزمایشگاهی سلول­های بنیادی جنینی انسانی (ESCs) [8] در سال 1998 توسط تامپسون و همکارانش انجام گرفت.

سلول­های بنیادی جنینی از توده سلولی داخلی (ICM)[9]جنین در مرحله بلاستوسیت به دست می­آیند. بلاستوسیت مرحله­ ای از تکوین پیش از لانه­گزینی در PESTAN(به خاطر محدودیت سایت در درج بعضی کلمات ، این کلمه به صورت فینگیلیش درج شده ولی در فایل اصلی پایان نامه کلمه به صورت فارسی نوشته شده است)داران است که معمولا چهار تا پنج روز بعد از لقاح ایجاد می­ شود. در این مرحله جنین 200-100 سلول دارد و به صورت کره­ای توخالی است. این کره متشکل از یک لایه سلولی برونی (تروفواکتودرم) است که به طور معمول پس از لانه­گزینی در رحم، بخشی از جفت را می­سازد. همچنین این کره مجتمعی از سلول­ها (حدود 30-20سلول) در داخل کره به نام توده سلولی داخلی است که قادرند لایه ­های مختلف جنین کامل را تولید کنند (شکل 1-3) (4).

شکل 1-3: تصویر شماتیک از سلول­های بنیادی جنینی که توانایی ایجاد سلول­های هر سه لایه­ی زاینده­ی جنینی را دارا می­باشد و همچنین سلول­های بنیادی بالغ که توانایی خودنوزایی و تمایز را دارند (5) .

1-1-4-2 سلول بنیادی خون بند ناف[10]

   خون بند ناف غنی از سلول­های بنیادی و سلول­های خونساز است. این سلول‌ها بسیار پرتوان و نامیرا هستند و همچنین در اثر تکثیرهای پی در پی دچار پیری نمی‌شوند، به طوری­که با تزریق‌ و یا جایگزینی آنها در بافت‌‌هایی که آسیب جدی دیده‌اند می‌توانیم به بهبودی و تشکیل سلول‌های جدید بافت کمک نمائیم. خون بند ناف دارای 6/0 تا 1 درصد سلول‌های پیش‌ساز خونی و بنیادی خون‌ساز است. ژله وارتون بند ناف منبع غنی از موکوپلی­ساکاریدها بوده که سلول­های بنیادی بالغ نیز در آن یافت می­ شود (6)خون بند ناف دارای مزایای زیادی چون محدود نبودن به اهداکننده، بلوغ کمتر سلول نسبت به سلول‌های فرد بالغ و کاهش احتمال پس­زدگی پس از پیوند می‌باشد (7). همچنین خون بند ناف را می‌توان ذخیره نمود و در موارد نیاز برای خود شخص یا فرد دیگری استفاده نمود. استفاده از این سلول‌ها در درمان بیماری‌ها چندان معمول نیست ولی این سلول‌ها در درمان دیابت نوع 1، بیماری‌های قلبی و عروقی، لوپوس اریتماتوس، بیماری‌های نورولوژیک مانند سکته مغزی، پارکینسون و آلزایمر، کم‌خونی‌ها و نقص ایمنی و بیماری‌های کبدی به کار می‌رود (شکل 1-4) (6).

 

شکل 1-4: نمایی از بند ناف (رگ‌های بند ناف (2 سرخرگ و یک سیاهرگ) و ژله وارتون[11] و غشا خارجی) (www.mdpi.com).

1-1-4-3 سلولهای بنیادی بزرگسالان (Adult stem cells):

انواع سلول بنیادی بالغ

بسیاری از بافت­های بالغ حاوی سلول­های بنیادی هستند و قدرت تمایز و توانایی خود نوزایی را دارند، به این سلول­ها سلول­های بنیادی بالغ گفته می‌شود. در زیر چند مثال از این نوع سلول‌ها آورده شده است:

الف) سلول بنیادی عصبی

موضوعات: بدون موضوع  لینک ثابت
[دوشنبه 1399-10-01] [ 10:47:00 ق.ظ ]




چكیده

زمینه و هدف: رتینوبلاستوما از تومورهای داخل چشمی شایع در کودکان می باشد. اگرچه در درمان رتینوبلاستوما پیشرفت وجود دارد ولی شکست در درمان و مرگ و میر در کشور های توسعه یافته چشم گیر می باشد. مهمترین علت این شکست مقاومت دارویی و عوارض آن می باشد.هدف این مطالعه ارزیابی اثر متقابل داروی SD-208 داروی ضد سرطان و افزایش بیان TGIF2LX در سلول های Y79 رده سلولی رتینوبلاستوما می باشد.

روش پژوهش: در اولین مرحله ارزیابی پروتئین TGIF2LX ،وکتور PEGFP-N1 که شامل تمام سکانس ژن TGIF2LXبود به سلول های Y79 ترانسفکت شد و بیان آن توسط میکروسکوپ UV و Realtime RT-PCR ثابت شد. همراه با ترانسفکشن سلول با دز های  مختلف داروی SD-208 ( (0,1µM,2µMتیمار شد.سپس الگوی بیان 5miRNA  شامل Let7g,18a,34a,22,20a در سلول های ترانسفکت شده تیمار شده و بدون تیمار در مقایسه با سلول های ترانسفکت نشده مورد بررسی قرارگرفت.       

یافته‌ها:ما متوجه شدیم که تمام miRNA ها در سلول های ترانسفکت شده تیمار شده و با داروی SD-208 افزایش بیان داشتند p<0.05 بجز miRNA20a.

نتیجه گیری:این اولین مطالعه است که نشان داد که SD-208 بیان ژن هموباکس وmiRNA های متفاوت را افزایش می دهد که نقش تومورساپرسوری در رتینوبلاستوما را دارند.همچنین نتایج ما پیشنهاد می کند که استفاده همزمان TGIF2LXو SD-208 می تواند روش جدید در درمان رتینوبلاستوما باشد.

واژگان کلیدی: رتینوبلاستوما، TGIF2LX، miRNA، Y79 Cell line، SD-208

 

 

فهرست عناوین صفحه

فصل 1:مقدمه و بیان مسئله. 1

1‌.1‌رتینوبلاستوما 2

1‌.1‌.1‌ اپیدمیولوژی.. 2

1‌.1‌.2‌ پاتوژنز. 3

1‌.1‌.3‌ ویژگی های کلینیکی وتشخیصی.. 5

1‌.2‌ تاریخچه خانوادگی.. 5

1‌.3‌ تشخیص…. 5

1‌.4‌ ارزیابی قبل از درمان.. 6

1‌.5‌ درمان.. 6

1‌.6‌ مکانیسم مولکولی سرطان.. 9

1‌.6‌.1‌ مسیر پیام رسانی TGFβ 9

1‌.6‌.1‌.1‌ خانواده لیگاند های TGFβ.. 11

1‌.6‌.1‌.2‌ رسپتور نوع 1و2 ( TGFβRI,II) 11

1‌.6‌.1‌.3‌ فسفریلاسیون SMAD… 12

1‌.6‌.2‌ تنظیم پیام رسانی TGFβ. 12

1‌.6‌.3‌ دخالت پیام رسانیTGFβ  در سرطان.. 13

1‌.6‌.4‌ ژنهای همئوباکس(Homeobox) 14

1‌.6‌.4‌.1‌ ساختار ژن های همئوباکس….. 14

1‌.7‌     نقش ژن های همئوباکس (Homeobox) در ایجاد سرطان.. 17

1‌.8‌ miRNA 18

1‌.8‌.1‌ بیوژنز miRNA ها و نحوه مهار ترجمه. 19

1‌.9‌ miRNA و سرطان.. 20

1‌.10‌ miRNA ابزاری برای شناسایی و تشخیص سرطان.. 21

1‌.11‌ miRNA ودرمان سرطان.. 22

1‌.12‌   بیان مسئله و اهمیت پژوهش…. 23

1‌.13‌   اهداف پژوهش…. 24

1‌.13‌.1‌  هدف اصلی.. 24

1‌.13‌.2‌  اهداف ویژه 24

1‌.13‌.3‌  هدف کاربردی.. 25

فصل 2: بررسی متون.. 26

2‌.1‌ بررسی متون مرتبط با موضوع. 27

فصل 3:مواد و روش ها 32

3‌.1‌ مواد شیمیایی و آنزیم ها 33

3‌.1‌.1‌ پلاسمیدوسویه باکتری.. 35

3‌.1‌.1‌.1‌ خصوصیات پلاسمید.. 36

3‌.1‌.1‌.2‌ خصوصیات میزبان.. 37

3‌.2‌ روش ها 37

3‌.2‌.1‌ کشت باکتری.. 37

3‌.2‌.1‌.1‌ مواد و وسایل مورد نیاز برای کشت باکتری… 37

3‌.2‌.1‌.2‌ طرز تهیه محیط کشت LB مایع.. 38

3‌.2‌.1‌.3‌ گلیسرول استاک…. 38

3‌.2‌.2‌ روش انجام   miniprepاستخراج DNA  پلاسمیدی از باکتری.. 39

3‌.2‌.2‌.1‌ بررسی کمی وکیفی DNA پلاسمیدی… 41

3‌.2‌.3‌ هضم آنزیمی پلاسمید های استخراج شده 45

3‌.2‌.4‌ کشت سلولی.. 46

3‌.2‌.4‌.1‌ محیط کشت…. 46

3‌.2‌.4‌.2‌ سرم جنینی گاوFBS.. 47

3‌.2‌.4‌.3‌ تهیه محیط انجاد از سلولها 47

3‌.2‌.4‌.4‌ خصوصیات سلولهای مورد استفاده شده در این پایان نامه. 48

3‌.2‌.5‌ تعیین منحنی کشندگی انتی بیوتیک G418. 48

3‌.2‌.6‌ منطبق سازی سلولها 48

3‌.2‌.7‌ ترانسفکشن سلولهای Y79  با وکتور پلاسمیدی نوترکیب pEGFP-TGIF2LX.. 49

3‌.2‌.8‌ انتخاب سلولهای مثبت… 50

3‌.2‌.9‌ بررسی بیان ژن TGIF2LX در سلول های ترانسفکت شده در سطح mRNA بوسیله Realtime RT-PCR                            51

3‌.2‌.9‌.1‌ محافظت از RNA… 52

 

مقالات و پایان نامه ارشد

 

3‌.2‌.9‌.2‌ استخراج RNA… 55

3‌.2‌.9‌.3‌ تیمار نمونه RNA باآنزیم دئوکسی ریبونوکلئاز  I. 59

3‌.2‌.9‌.4‌ سنتز DNA مکمل(cDNA) 60

3‌.2‌.9‌.5‌ PCR(Polymerase chain reaction) واکنش زنجیره ای پلیمراز. 64

3‌.2‌.9‌.6‌ واکنش Realtime PCR… 68

3‌.2‌.9‌.7‌ تجزیه و تحلیل داده های حاصل از واکنش Realtime RT-PCR… 77

3‌.2‌.10‌  بررسی بیان eGFP-TGIF2LX در سطح پروتئین بوسیله Western blot 78

3‌.2‌.10‌.1‌ الکتروفورز عمودی SDS-PAGE.. 78

3‌.2‌.10‌.2‌ رنگ آمیزی SDS-PAGE.. 84

3‌.2‌.10‌.3‌ وسترن بلاتینگ….. 86

3‌.2‌.11‌  بررسی میزان تکثیر سلولی بوسیله تجزیه نمک تترازولیوم. 90

3‌.2‌.11‌.1‌ بررسی اثر بیان افزایشی TGIF2LX سلولهای Y79 در مقایسه با کنترل.. 90

3‌.2‌.11‌.2‌ بررسی اثر متقابل SD-208 و بیان افزایشی TGIF2LX سلولهای Y79 در مقایسه با کنترل.. 91

3‌.2‌.11‌.3‌ پروتکل شمارش سلول.. 92

3‌.2‌.12‌  مطالعه بیان اثر داروی SD-208 بر روی بیانTGIF2LX, miRNA Let7g,18a,34a,22,20  در سلولهای ترانسفکت شده Y79 در مقایسه با نمونه های کنترل به وسیله Real time RT-PCR.. 92

فصل 4: نتایج و یافته ها 96

4‌.1‌Mini prep   و هضم DNA  پلاسمیدی جهت تایید وکتور نوترکیب… 97

4‌.2‌ بررسی بیانTGIF2LX  در سطح mRNA… 98

4‌.2‌.1‌ نتیجه بررسی کیفی و کمی RNA.. 98

4‌.2‌.2‌ بررسی کیفی cDNA.. 99

4‌.3‌ بررسی بیان TGIF2LX  در سلولهای ترانسفکت شده 101

4‌.3‌.1‌ مطالعه بیان TGIF2LX  در سلولهای ترانسفکت شده Y79  در مقایسه با نمونه های کنترل بوسیله میکروسکوپ                                   101

4‌.3‌.2‌ تایید بیان واضح ژن GFP-TGIF2LX توسط Realtime RT- PCR.. 102

4‌.3‌.3‌ مطالعه بیان ژن TGIF2LX در سلول های ترانسفکت شده با وکتور حاوی GFP-TGIF2LX در سطح پروتئین بوسیله Western Blot 104

4‌.3‌.4‌ مطالعه بیان اثر داروی SD-208 بر روی بیانTGIF2LX  در سلولهای ترانسفکت شده Y79 در مقایسه با نمونه های کنترل                    105

4‌.4‌ بررسی اثر بیان افزایشی TGIF2LX بر روی سلولهای Y79. 105

4‌.4‌.1‌ نتایج ازمایش (MTT)Microculturetetrazolium Test 105

4‌.4‌.2‌ بررسی اثر متقابل SD-208 و بیان افزایشی TGIF2LX بر روی سلولهای Y79 در مقایسه با کنترل.. 106

4‌.5‌ بررسی بیان miRNA Let7g,18a,34a.22,20a در سلولهای ترانسفکت شده و کنترل.. 108

4‌.6‌ مطالعه بیان اثر داروی SD-208 بر روی بیان miRNA Let7g,18a,34a.22,20  در سلولهای ترانسفکت شده Y79 در مقایسه با نمونه های کنترل.. 109

4‌.7‌ Ct در واکنش Realtime PCR.. 110

فصل 5: بحث، نتیجه گیری و پیشنهادها 113

5‌.1‌ بحث   114

5‌.2‌ تاثیر بیان افزایشی TGIF2lX بر روی Cellular Viability در رده سلولی Y79. 116

5‌.3‌ تاثیر دارویSD-208  بر روی Cellular Viability در رده سلولی Y79 بیان کننده افزایشی TGIF2LX و کنترل  117

5‌.4‌ اثر SD-208 بر روی بیان TGIF2LX در رده سلولی Y79 ترانسفکت شده در مقایسه با کنترل                         118

5‌.5‌ اثر متقابل SD-208 و TGIF2LX بر روی بیانmiRNA های مورد مطالعه. 118

5‌.5‌.1‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNAlet7g در رده سلولی Y79. 118

5‌.5‌.2‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA18a در رده سلولی Y79. 119

5‌.5‌.3‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA34a در رده سلولی Y79. 119

5‌.5‌.4‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA22 در رده سلولی.. 119

5‌.5‌.5‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA20a در رده سلولی Y79. 120

5‌.6‌ نتیجه گیری.. 120

       7.5 پیشنهاد ها ……………………….121

منابع و مراجع.. 122

پیوست ها 131

1‌.1‌          رتینوبلاستوما

رتینوبلاستوما یکی از سرطان های بدخیم چشمی شایع کودکی می­باشد که به دو فرم پراکنده (تک گیر) و ارثی(خانوادگی) وجود دارد [1]. تقریبا 4 درصد تومورهای کودکان را رتینو بلاستوما تشکیل می­دهد .این تومور شایعترین بدخیمی اولیه چشمی است که در غرب 99درصد کودکان از این سرطان نجات پیدا می­ کنند ولی بیش از 90 درصدآنها بینایی خود را از دست می­ دهند و متاسفانه در کشورهای در حال توسعه بقا کودک تقریبا 50 درصد می­باشد[2] و [3].

اغلب کودکان مبتلا به رتینوبلاستوما با علامت لوکوکوریا[1] (شکل ‏1‑1) که والدین آنها متوجه م­شوند مراجعه می­ کنند[4].

1‌.1‌.1‌                                                                                      اپیدمیولوژی

رتینوبلاستوما تقریبا با شیوع 1 در 15000و 1 در 16600تولد زنده در امریکا و اروپای شمالی رخ میدهد [5] و [6] ودر بین سالهای 2005-2009شیوع سالیانه رتینوبلاستوما در امریکا 4.1 در هرمیلیون کودک زیر 15 سال می­باشد[5] ودر کل دنیا سالیانه 5000تا 8000 کودک مبتلا به رتینوبلاستوما می­شوند [7] به طور متوسط سن تشخیص بیماری زیر 2 سال است و تقریبا 95درصد قبل از 5 سالگی می­باشد.شیوع بیماری در بین دختر وپسر و سیاه و سفید شبیه به هم می­باشد[5].

تقریبا 1/4 موارد رتینوبلاستوما دو طرفه می­باشد بیماریهای دوطرفه همیشه الگوی ارثی دارند. تومور های دو طرفه زودتر در کودکان رخ می­دهد که نشان دهنده وجود موتاسیون در سلولهای زایا می­باشد. فرم ارثی رتینوبلاستوما نیازمند یک جهش ژرم لاین است که می ­تواند از هر یک از والدین یا از محیط( که منجر به یک موتاسیون ژرم لاین شود) می­باشد. بر عکس فقط 15 درصد از موارد یکطرفه ارثی هستند که اغلب چند کانونی هستند و باید از نظر جهش ژرم لاین بررسی شوند که معمولا در 2سال اول زندگی رخ می­دهد کم تر از 10 درصد بیماران رتینوبلاستومایی تاریخچه مثبت خانوادگی دارند.

تقریبا 60 درصد کودکان با رتینوبلاستوما الگوی یک طرفه غیر ارثی دارند.کودکان با رتینوبلاستوما غیرارثی یک موتاسیون جدید در یک سلول شبکیه دارند که منجر به تومور می­شوند [8] . ناهنجاری ژنتیک در فرم ارثی رتینوبلاستوما موجب ایجاد و پیشرفت تومور مثل استئوژنیک سارکوما وسارکومای بافت نرم(بخصوص لیومیوسارکوما)و ملانومای بدخیم میشود شیوع سرطان ثانویه بعد از تشخیص رتینوبلاستوما در فرم ارثی و غیرارثی به ترتیب 51 و 5 درصد میباشد که بیش از 60 درصد سرطان ها سارکوما می­باشد [9].

1‌.1‌.2‌                                                                                     پاتوژنز

رتینوبلاستوما معمولا بوسیله غیر فعال شدن هر دو الل ژن رتینوبلاستوما رخ می­دهد.با الگوی اتوزومی غالب این ژن در ناحیه کروموزم 13 بازوی بلند در ناحیه 14قرار دارد که کد کننده یک پروتئین هسته ای با نقش تومورساپرسوری می­باشد [10].

مدل 2 ضربه ای که پیشنهاد شده است دلیل متفاوت بودن ویژگی های کلینیکی موارد ارثی و غیر ارثی رتینوبلاستوما را مطرح میکند[11]. (شکل ‏1‑2)

 
شکل ‏1‑2: مدل 2  ضربه ای رتینوبلاستوما

در مدل ارثی در ژن RB1 یک موتاسیون در کل سلول ها وجود دارد و ضربه دوم در مراحل بعدی تکامل رخ می­دهد که این افراد مستعد رتینوبلاستومای دوطرفه و چندکانونی می­باشند.ضربه دوم می ­تواند رخ دهد ویا توسط تغییرات اپی­ژنتیک خاموش شود.

در مدل رتینوبلاستومای غیر ارثی دو جهش در یک الل به صورت خودبه خودی در یک سلول سوماتیک شبکیه رخ میدهد که معمولا منجر به مدل کلینیکی تومور یه کانونی ویه طرفه رتینوبلاستوما می­ شود [12].

رتینوبلاستوما اگر درمان نشود رشد میکند و جای چشم را اشغال می­ کند وکره چشم را از بین میبرد و ممکن است طی 4 ماه بعد از تشخیص به مغز متاستاز بدهد و مرگ طی یک سال رخ بدهد.اغلب راه های متاستاز تومور به وسیله اپتیک نرو[3] به سیستم عصب مرکزی و یا گسترش از طریق مشیمیه به اربیت میباشد [13].

1‌.1‌.3‌                                                                                    ویژگی های کلینیکی وتشخیصی

لوکوکوریا شایعترین علامت در کودکان رتینوبلاستومایی میباشد اگر چه علایم دیگر نیز وجود دارد و لوکوکوریا برای تشخیص ضروری نیست. شایعترین علایم لوکوکوریا (54درصد) و استرابیسم (19درصد) کاهش دید (4درصد) عفونت چشمی (5درصد) و تاریخچه خانوادگی مثبت (5درصد) میباشد و موارد دیگر عنبیه هتروکروم وخونریزی ویتره و هایفما بدون ضربه و گلوکوم و سلولیت اربیت و پروپتوزیس و درد چشم و تب می­باشد [14].

1‌.2‌         تاریخچه خانوادگی

میزان خطر در میان نسل فرد بستگی به تاریخچه خانوادگی رتینوبلاستوما ویا چگونگی تومور در فرد نشانه دارد(به طور مثال یه طرفه یا دو طرفه یه کانونه یا دو کانونه).میزان خطر از 6 درصد (اگر پروباند بیماری یه طرفه و یه کانونه داشته باشد یا با تاریخچه خانوادگی منفی باشد)تا 50 درصد می­باشد(اگر پروباند دارای موتاسیون ژرم لاین باشد یا حدس زده شود که موتاسیون دارد)[15].

 

کودک با ریسک بالا ی رتینوبلاستوما باید سریع بعد از به دنیا آمدن توسط چشم پزشک ارزیابی شود. غربالگری باید هر 3-4ماه تا 3-4 سالگی  وهر6 ماه تا 5-6 سالگی صورت گیرد [16].

1‌.3‌        تشخیص

تشخیص رتینوبلاستوما از طریق مردمک دیلاته شده وبا دستگاه افتالموسکوپی ایندایرکت تحت بیهوشی صورت می­گیرد.یافته ها به صورت توده شبکیه گچی خاکستری رنگ و تردشونده یافت می­ شود. پاتولوژی برای ثابت کردن تشخیص لازم می­باشد.تست های کمکی اگرچه همیشه ضروری نمی­باشندولی ممکن است برای ثابت کردن تشخیص انجام شود.سونوگرافی چشمی یا مغز نگاری کامپوتری سی تی اسکن یک توموده ی جامد با ویژگی های کلسیفیکاسیون را نشان دهد. تصویر رزونانس مغناطیسی[4] نیز می ­تواند وجود توده داخل چشمی را ثابت کند بویژه در مواردی که تشخیص بیماری با بیماری کت سخت می­باشد.یافته های فوندوسکوپی می ­تواند رتینوبلاستوما را از بیماری کت و از بیماری پارگی رتین اگزوداتیو متمایز کند ولی کلسیفیکاسیون را که عامل مهم در تشخیص سایز تومور و درگیری عصب چشمی و وجود آسیب درون جمجمه ای می­باشد را نمی ­تواند نشان دهد [14].

1‌.4‌        ارزیابی قبل از درمان

تست های غیر ژنتیکی: ارزیابی کودکان با رتینوبلاستوما کاملا منحصر به فرد جهت انتخاب مدل درمانی می­باشد(مثلاتعداد پایه ای سلولها وبیوشیمی خون جهت شروع شیمی درمانی).برای بیماران با تومور های کوچک (به جز در موارد خانوادگی)بررسی کامل و معاینه زیر بیهوشی و اولتراسونوگرافی و MRIسر و چشم معمولا کفایت می­ کند[17]. در مراحل اولیه تشخیص وجود موارد متاستاز نادر می­باشد(ازمایش مغز استخوان و آب نخاع و اسکن استخوان)ومعمولا این موارد ازمایش نمی­ شود [18]. اما اگر مدارکی دال بر وجود تومور در بیرون از کره چشم وجود دارد(تهاجم به عصب چشم یا درگیری مشیمیه) ارزیابی های کامل متاستاز باید انجام شود.علایم ونشانه های متاستاز شامل بی اشتهایی یا کاهش وزن وتهوع و سر درد و آسیب عصبی ووجود توده اربیت یا توده نرم بافتی می­باشد[19].

تست های ژنتیک مولکولی: برای همه بیماران تستهای ژنتیکی پیشنهاد می­ شود. بیماران با موتاسیون ژرم لاین باید به متخصص ژنتیک ارجاع داده شوندتا والدین و فرزندان تست شوند .تست مولکولی گلبول های سفید خون محیطی در 90-95 درصد موارد موتاسیون های ژرم لاین را تشخیص می­دهد در موارد یه طرفه تست مولکولی باید روی سلول تومور صورت بگیرد تا موتاسیون خاصRB1  تشخیص داده شود [20].

1‌.5‌        درمان

گزینه های گوناگونی برای درمان کودکان با رتینوبلاستوما در دسترس می­باشد.انتخاب درمان وابسته به پیش آگهی بینایی وسایز و مکان تومور حضور یا عدم حضور توده در ویتره یا ساب رتینال و سن بیمار دارد.

موضوعات: بدون موضوع  لینک ثابت
 [ 10:46:00 ق.ظ ]




کلمات کلیدی: ته­نشست، غلظت، دز، HYSPLIT، پخش اتمسفریک

عنوان                                                                                      صفحه

فهرست مطالب………………………………………………………………….. ‌ه

فصل اول………………………………………………………………………… 1

مقدمه…………………………………………………………………………. 2

1-1- مشخصات راکتور مورد مطالعه در عملکرد عادی……………………… 6

1-2- مشخصات راکتور مورد مطالعه در حالت حادثه………………………. 7

1-2-1- نوع راکتور…………………………………………………….. 7

1-2-2- پارامترهای قلب راکتور………………………………………… 7

1-2-3- سیستم خنک­کننده…………………………………………. 10

1-3- اصول فیزیکی و تئوری پراکندگی………………………………….. 11

1-3-1- فرایند انتقال و مسیر حرکت………………………………… 11

1-3-2- پخش توسط گرداب­های آشفتگی……………………………. 12

1-3-3- فرایندهای تعدیل مانند فرسایش…………………………….. 13

1-4- مدل­های پراکندگی جوی………………………………………….. 14

1-5- سمیت پرتویی…………………………………………………….. 15

1-6- تابش و اصطلاح دز………………………………………………… 19

1-6-1- دز جذبی…………………………………………………….. 19

1-6-2- دز معادل…………………………………………………….. 19

1-6-3- دز موثر………………………………………………………. 20

1-6-4- دز معادل موثر جمعی……………………………………….. 20

1-6-5- دز معادل تجمعی……………………………………………. 20

1-6-6- ارتفاع گیرنده دز……………………………………………… 21

1-7- راه­های پرتوگیری………………………………………………….. 21

1-7-1- دز ناشی از استنشاق………………………………………… 24

1-7-2- دز ناشی از بلع………………………………………………. 25

1-7-3- مسیرهای پرتوگیری خارجی…………………………………. 27

1-7-3-1- پرتوگیری خارجی از توده پرتوزا…………………………… 27

1-7-3-2- پرتوگیری خارجی از پرتوزایی ته­نشست شده……………… 28

1-8- ضرورت حفاظت در برابر تابش………………………………….. 31

1-8-1- استانداردهای حفاظت در برابر اشعه…………………………. 32

1-8-2- کمیسیون بین ­المللی حفاظت پرتوشناختی (ICRP)………… 33

1-8-3- سازمان بین ­المللی انرژی اتمی……………………………….. 34

1-8-4- شورای ملی اندازه ­گیری­ها و حفاظت در برابر تابش…………… 34

1-8-5- معیارهای اصلی ایمنی تابش…………………………………. 34

فصل دوم……………………………………………………………………… 36

مروری بر تحقیقات انجام شده……………………………………………….. 37

فصل سوم……………………………………………………………………… 41

تئوری انواع مدل­های پخش………………………………………………….. 42

3-1- تعریف پایداری…………………………………………………….. 43

3-2- روش­های اندازه ­گیری آشفتگی…………………………………….. 44

3-2-1- اندازه ­گیری اویلرین………………………………………….. 44

3-2-2- اندازه ­گیری لاگرانژین ……………………………………….. 45

3-2-3- نسبت زمان لاگرانژین به اویلرین (β)………………………… 45

3-3- مدل­های پراکندگی مواد…………………………………………… 47

3-3-1- مدل ستونی گوسی برای چشمه­های پیوسته………………… 47

3-3-1-1- شکل مدل گوسی……………………………………… 48

3-3-1-2- محاسبه مقدار پارامترهای پراکندگی y? و z?……………. 49

3-3-1-2-1- روش پاسکال…………………………………………… 49

3-3-1-2-2- روش گرادیان دمای عمودی……………………………. 49

3-3-1-2-3-روش عدد ریچاردسون………………………………….. 49

3-3-1-3-تغییر سرعت باد با ارتفاع………………………………….. 50

3-3-2- مدل آماری پخش برای چشمه­های نقطه­ای پیوسته………….. 50

3-3-2-1- محاسبه ضریب همبستگی در لایه ­های مرزی……………… 51

3-3-3- مدل­های مسیر ذرات مونت کارلو برای پخش……………… 54

3-3-4-پخش پف…………………………………………………….. 55

3-3-4-1- محاسبه پارامتر پف……………………………………….. 57

3-3-4-1-1-رویکرد آماری…………………………………………… 57

3-3-4-1-2-رویکرد همانندی………………………………………… 58

 

مقالات و پایان نامه ارشد

 

3-3-4-2-کاربردها……………………………………………………. 60

3-3-5- مدل­های همانندی پخش…………………………………….. 61

3-3-6-مدل­های پخش نواحی شهری…………………………………. 62

فصل چهارم…………………………………………………………………… 63

توصیفی از مدل نرم­افزاری HYSPLIT…………………………………….. 64

4-1- ویژگی­های مدل HYSPLIT…………………………………….. 65

4-2- فایل­های ورودی هواشناسی………………………………………… 66

4-3- محاسبه ناهمواری­ها توسط HYSPLIT………………………….. 67

4-4- سایر پارامترهای ورودی مورد استفاده در مدل HYSPLIT……….. 69

4-4-1- ته­نشست خشک…………………………………………….. 69

4-4-2- ته­نشست مرطوب……………………………………………. 70

4-4-3- ثابت قانون هنری……………………………………………. 71

4-4-4- باز تعلیق ذرات ته­نشست شده……………………………….. 71

4-4-5- چگالی، شکل و قطر ذرات…………………………………… 71

4-5- روش محاسبه غلظت هوا در HYSPLIT………………………… 72

4-6- ساختن ورودی برای مدل HYSPLIT…………………………… 74

4-6-1- ورودی گرافیکی……………………………………………… 74

4-6-2- ورودی متنی…………………………………………………. 79

فصل پنجم…………………………………………………………………….. 81

مراحل انجام کار……………………………………………………………… 82

5-1- تفاوت­های کلی بین دو سناریوی عادی و حادثه……………………. 83

5-2- محاسبه ارتفاع موثر دودکش (بر اساس مومنتوم)…………………… 83

5-2-1-تاثیر ارتفاع موثر دودکش در توزیع غلظت…………………….. 85

5-3- بازه زمانی انجام محاسبات………………………………………….. 85

5-4- انتخاب زمان­های (روزهای) اجرای برنامه……………………………. 86

5-5- محاسبه دز معادل موثر کل سالانه…………………………………. 87

5-6- مشخصات سایت­های هسته­ای مورد بررسی………………………… 88

5-7- شبیه­سازی و محاسبات در عملکرد عادی راکتور……………………. 88

5-7-1- چشمه تابشی……………………………………………….. 89

5-7-2- ارتفاع موثر در عملکرد عادی راکتور………………………….. 89

5-7-3- انتخاب بدترین روز از نظر فیزیک بهداشت…………………… 90

5-7-4- محاسبه دز دریافتی افراد در حالت عملکرد عادی راکتور…….. 91

5-8- شبیه­سازی و محاسبات پس از وقوع حادثه………………………… 92

5-8-1- سناریوی حادثه……………………………………………… 92

5-8-2- چشمه تابشی……………………………………………….. 94

5-8-3- ارتفاع موثر…………………………………………………… 98

فصل ششم……………………………………………………………………. 99

نتایج و بحث……………………………………………………………….. 100

6-1- نتایج شبیه­سازی­ها در عملکرد عادی راکتور…………………… 100

6-1-1- نتایج مربوط به شبیه­سازی در تاریخ 9/1/2007……………. 102

6-1-2- نتایج مربوط به شبیه­سازی در تاریخ 15/5/2009………….. 103

6-1-3- نتایج مربوط به شبیه­سازی در تاریخ 19/7/2008………….. 104

6-1-4- نتایج مربوط به شبیه­سازی در تاریخ 5/11/2010………….. 105

6-2- نتایج فاز اول شبیه­سازی­ها در سناریوی وقوع حادثه…………… 106

6-3- نتایج فاز دوم شبیه­سازی­ها در سناریوی وقوع حادثه………….. 107

6-3-1- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 8/1/2006 (ژانویه)        108

6-3-2- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 9/2/2006 (فوریه)        110

6-3-3- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 5/3/2012 (مارس)       111

6-3-4- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 18/4/2012 (آوریل)     114

6-3-5- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 23/5/2006 (می)        116

6-3-6- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 15/6/2009 (ژوئن)       118

6-3-7- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 25/7/2012 (جولای)    120

6-3-8- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 25/8/2010 (آگوست)   122

6-3-9- نتایج مربوط به شبیه­سازی پس ازوقوع حادثه در 22/9/2011 (سپتامبر)    124

6-3-10- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 13/10/2006 (اکتبر)   126

6-3-11- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 10/11/2009 (نوامبر)  128

6-3-12- نتایج مربوط به شبیه­سازی پس از وقوع حادثه در 26/12/2009 (دسامبر) 130

6-4- نتیجه ­گیری و پیشنهادات…………………………………………. 132

مراجع……………………………………………………………………… 134

پیوست الف: نرم­افزارهای مختلف برای تخمین غلظت آلاینده­های جوی…. 137

مقدمه

مواد پرتوزای طبیعی از بدو تشکیل کره زمین در آن وجود داشته است. ولی با توسعه فن­آوری و بهره ­برداری انسان از آن، منابع پرتوزای ساخت دست بشر، در محیط زیست رو به افزایش گذاشته و مواد پرتوزای مصنوعی که در نتیجه­ فعالیت­های بشری در رشته­های گوناگون هسته ای        می باشد، به محیط زیست وارد شده، و به نحوی جزء آلاینده های غذایی، آشامیدنی و هوای تنفس موجودات زنده و به ویژه انسان محسوب می­گردند.

به منظور حفاظت رادیولوژیکی محیط زیست و به تبع آن حفاظت رادیولوژیکی موجودات زنده به ویژه انسان، شناسایی توام اکوسیستم (مناطق خاص زندگی که در آن گیاهان و جانواران محیط اطراف خود را تقسیم می­ کنند) و منابع پرتوزا و نحوه عملکرد، جابجایی، توزیع و رفتار هسته های پرتوزا در اجزای اکوسیستم، ضروری است.

به طور کلی هدف از حفاظت رادیولوژیکی، پایش انسان و محیط زیست در برابر عملکرد مواد پرتوزای طبیعی و مصنوعی موجود در محیط می­باشد و منظور از تحقیقات در این زمینه،        پیش ­بینی مسیرهای راه­یابی مواد پرتوزا به محیط زیست و تخمین میزان دز دریافتی توسط مردم در مناطق مختلف است تا بتوان میزان خطر ناشی از پرتوگیری­های داخلی و خارجی را تعیین کرد.

بنابراین مطالعات و بررسی مداوم، جهت تعیین عملکرد مواد پرتوزا در محیط زیست مورد نیاز می باشد، تا نتیجه مطلوب و اطلاعات مورد نظر حاصل شود. بدین ترتیب حفاظت رادیولوژیکی محیط زیست به عنوان یک ضرورت اجتناب­ناپذیر جهت تنظیم اکوسیستم و جلوگیری از پرتوگیری ناخواسته مطرح می باشد.

یکی از این منابع پرتوزایی ساخت بشر، راکتورهای هسته­ای هستند که در خلال کار عادی، کسر کوچکی از مواد پرتوزا را از طریق هوا به محیط زیست وارد می­ کنند.

انرژی هسته ای در سال های اخیر به دلایل زیر تبدیل به یک منبع مهم انرژی شده است:

  • تقاضای رو به رشد برای توان الکتریکی
  • افزایش رقابت جهانی برای سوخت های فسیلی
  • نگرانی درباره تابش گازهای گلخانه ای و تاثیر آن روی گرمایش زمین
  • نیاز برای استقلال انرژی

بنابراین در عصر حاضر انرژی هسته‌ای لازمه پیشرفت و خودکفایی هر کشوری است و در این بین ایران نیز از این قائده مستثنی نیست. از این­رو، گسترش علوم و فنون هسته‌ای و بومی­سازی این فناوری، از اولویت‌های نظام جمهوری اسلامی می‌باشد. با توجه به نیاز کشور به تولید رادیوایزوتوپ‌ها و رادیوداروها جهت درمان بیماران و همچنین تولید برق، ساخت راکتورهای تحقیقاتی و نیروگاه‌های هسته‌ای در کنار راکتورهای موجود، ضروری به نظر می‌رسد. بدین منظور و در راستای سندهای چشم انداز توسعه کشور، ساخت راکتورهای هسته‌ای تا توان2000 مگا وات در دستور کار قرار گرفته است.

اگرچه یک نیروگاه هسته ای، یک منبع خوب انرژی است و عمدتا تهدیدی برای محیط زیست به شمار نمی آید، ولی چنان­چه حادثه ای مهم برای راکتور رخ دهد، می ­تواند منجر به یک فاجعه بشری شود. بنابراین خطر آزادسازی تصادفی مواد رادیواکتیو به محیط زیست می ­تواند پیامد مهم استفاده از نیروگاه‌های هسته ای باشد.

موارد متعددی از حوادث راکتورهای هسته ای وجود دارد، مانند:

  • چاک ریور[1] در کانادا (1952)
  • آیداهو فالا[2] در آمریکا (1957)
  • تری مایل آیلند[3] در آمریکا (1979)
  • چرنوبیل در اوکراین (1986)

از بین این حوادث، حادثه چرنوبیل به طور کلی ادراک بشر را از ریسک تابشی[4] دگرگون کرد. در 26 آوریل 1986 در اوکران حادثه ای مهم رخ داد که در نتیجه­ آن یک مقدار زیادی ماده رادیواکتیو به اتمسفر آزاد شد که این مواد رادیواکتیو در شمال و جنوب اروپا و همچنین در کانادا و ایالات متحده آمریکا حس شد. تنها نیمه­ی جنوبی کره زمین آلوده نشد. این حادثه نشان داد که در صورت وقوع یک حادثه مهم و بزرگ هسته ای، نه تنها مکانی که در آن حادثه رخ داده است، بلکه اطراف آن نیز می تواند تحت تاثیر قرار گیرد.

 به هر حال راکتور‌های هسته ای، ذرات رادیواکتیو مایع و گازی ساطع می­ کنند و از آن جائی­که اثرات تابش­ها به طور خاص یک نگرانی مهم برای مردم و کشور است، ایمنی هسته­ای و محافظت انسان و طبیعت در برابر اشعه یونیزان موضوع مهمی است. البته قابل ذکر است که راکتورهای هسته­ای به گونه­ ای کاملا دقیق طراحی، ساخت و مانیتور می­ شوند که تا حد امکان از آزادسازی مواد رادیواکتیو جلوگیری شود.

راکتورهای هسته‌ای به طور معمول و یا در اثر نقص سیستم‌های ایمنی و همچنین در اثر سوانح هسته‌ای و بلایای طبیعی، رادیونوکلوئیدهایی را از طریق سیستم تهویه در محیط آزاد می­ کنند و موجب افزایش دز محیط اطراف راکتور می‌شوند. پارامترهای مختلفی در میزان توزیع و نحوه انتشار مواد رادیواکتیو خروجی از راکتورها نقش دارند؛ شکل و حالت مواد رادیواکتیو خروجی، کیفیت فیلترهای جذب و سیستم‌ تهویه، ارتفاع دودکش، سرعت باد، میزان بارندگی سالیانه منطقه، شرایط آب و هوایی محیط، ارتفاع ساختمان‌های ساکنین اطراف راکتور از آن جمله‌اند.

هدف در طراحی راکتورهای هسته ای، کنترل کردن واکنش های زنجیره ای و همچنین اطمینان از وجود تغییرات کم در توان خروجی و یا تغییرات مجازی که در زمان های زیاد (ده­ها ثانیه) در توان خروجی ایجاد می شوند، می باشد.

اگر نقصی در راکتور رخ دهد که تغییرات توان بسیار سریع باشد، یک حالت گذرا را در راکتور ایجاد می­ کند و متاسفانه راکتورها طوری طراحی می­شوند که با افزایش زمان ناشی از تغییرات توان، ممکن است قلب راکتور ذوب شده و یا حالت یکپارچه خود را از دست دهد. انتقال سریع گرما به یک خنک­کننده[5] مایع، می ­تواند موجب افزایش در فشار شود که ممکن است آسیب ساختاری شدید به راکتور (مانند حادثه چرنوبیل) را به همراه داشته باشد. بنابراین واضح است که ریسک، همواره در بهره برداری یک راکتور هسته­ای به مانند سیستم های پیچیده دیگر مثل نیروگاه­های شیمیایی و یا پالایشگاه­های نفتی، باید در نظر گرفته شود. اما آن چه راکتور هسته­ای را با دیگر نمونه های ذکر شده متفاوت می­ سازد این است که اگر نقصی در سیستم های راکتور رخ  دهد، ممکن است باعث انتشار مقادیر زیادی از مواد رادیواکتیو به محیط خارج شود و اثرات یک رویداد و یا حادثه در راکتور هسته­ای می ­تواند تا هزاران کیلومتر مربع از اطراف نیروگاه را تحت شعاع خود قرار دهد، در حالی که حوادث شیمیایی، چه در بعد مسافت و چه از نظر مدت زمان و یا دوره طولانی آلودگی، اغلب نمی­توانند با حوادث هسته­ای که در راکتور هسته ای رخ می­دهد، مقایسه شوند.

ملاک ICRP برای تعیین میزان تابش­های حرفه­ ای این است که ریسک متوسط به پرتوکاران نباید بیشتر از ریسک متوسط کارکنان صنایع متعارف و امن باشد. ضمن این که حداکثر دز معادل سالانه در حد 50 میلی­سیورت است، ICRP می تواند میانگین دز معادل سالانه را برابر با یک دهم حد بالا فرض کند. کارکنان نیروگاه هسته­ ای، در حدود 5/1 میلی­سیورت در سال دریافت می­ کنند که معادل ریسک سالانه ای در حدود 1 مورد در 30000 می باشد. با آمیختن تصادفات معمول و ریسک­های مربوط به اشعه، در مجموع ریسک سالانه مرگ برای کار در نیروگاه، برابر با 1 در 1200 می شود.

موارد ایمنی مربوط به حفاظت از پرتوگیری کارکنایی که در معرض مواد و پسماندهای رادیواکتیو قرار دارند، باید با دقت، کنترل و مانیتورینگ شود. بنا به توصیه 26ICRP در خصوص پرتوگیری افراد، تابش تک تک افراد جامعه و دز دسته جمعی مردم ناشی از پسماندهای رادیواکتیو باید به حدی پایین باشد که از نظر منطقی قابل دست­یابی گردد و نیز با توجه به ملاحضات اقتصادی و اجتماعی کاهش داده شود.

در سایت یک راکتور هسته­ای، نظارت و کنترل مقادیر دز مجاز در قسمت ­های مختلف توسط بخش فیزیک بهداشت هم در داخل سایت و هم در خارج سایت انجام می­ شود، تا اطمینان حاصل شود که عملیات نیروگاه از نظر مسائل حفاظتی مربوط به پرسنل داخل سایت و افراد جامعه در بیرون سایت به صورت امن و بی­خطر انجام می شود.

بدین منظور تحلیل حوادث احتمالی که منجر به خارج شدن مواد رادیواکتیو به محیط می­شوند، جهت به دست آوردن نحوه پخش و توزیع مواد رادیواکتیو و اندیشیدن تمهیداتی متناسب با مقادیر مختلف آلودگی در مرحله بعد از تحلیل حوادث، الزامی می باشد.

در بهره ­برداری از یک راکتور هسته­ای، سیستم­های کنترلی و حفاظتی متنوعی طراحی می­شوند که در نهایت قلب راکتور به عنوان اصلی­ترین منبع رادیواکتیو، محافظت شده و از ذوب شدن آن جلوگیری خواهد شد.

در حال حاضر بیش از 300 راکتور تحقیقاتی در سراسر جهان موجود می باشند که بیش از 50 نوع آن­ها شامل راکتورهای تریگا [6] و بقیه شامل راکتورهای شناور در استخرهای آب سبک و همچنین راکتورهای آب سنگین تحت فشار با

موضوعات: بدون موضوع  لینک ثابت
 [ 10:46:00 ق.ظ ]




کلیدواژه‌ها: ایرانکوه، آلودگی فلزات سنگین، دشت لنجان، سرب، روی

فهرست مطالب

عنوان مطالب                                                                                                           صفحه

فصل اول: کلیات پژوهش…. 1

1- 1 مقدمه. 2

1 – 1 – 1  فلزات سنگین.. 3

1 – 1 – 2 فلزات واسطه‌ی سرب، روی و کادمیوم: 3

1 – 1 – 3 توزیع فلزات سنگین در محیط… 4

1 – 1 – 4 چرخه‌ی طبیعی عناصر. 4

1 – 1 – 5 چرخه‌های انسانزاد. 5

1 – 1 – 6 سرب… 5

1 – 1 – 6 – 1 سرب در خاک… 7

1 – 1 – 6 – 2 سرب در آب… 9

1 – 1 – 7 روی.. 10

1 – 1 – 7 – 1 روی در خاک… 12

1 – 1 – 7 – 2 روی در آب… 13

1 – 2 بیان مسئله و اهداف تحقیق… 14

1 – 3 تاریخچه‌ مطالعات پیشین… 15

1 – 3 – 1 مطالعات پیشین منطقه مورد مطالعه. 15

1 – 3 – 2 مطالعات مشابه در سایر نقاط ایران.. 16

1 – 3 – 3 مطالعات مشابه در سایر کشورها 17

فصل دوم: زمین شناسی منطقه. 20

2 – 1 موقعیت جغرافیایی منطقه. 21

2 – 2 کلیات زمین شناسی… 22

2 – 2 – 1 ماگماتیسم.. 24

2 – 2 – 2 تکتونیک…. 25

2 – 2 – 2 – 1 گسل‌های مهم منطقه. 26

2 – 2– 3 چینه شناسی منطقه. 27

2 – 2 –  3 – 1 واحدهای تریاس بالایی – ژوراسیک…. 27

2 –  2 – 3 – 2 واحدهای کرتاسه‌ی زیرین.. 27

2 –  3 کانه زایی در منطقه. 30

فصل سوم: مواد و روش ها 33

3 – 1 مقدمه. 34

3 – 2 مطالعات تکمیلی… 34

3 – 2- 1 نمونه برداری.. 34

3 – 2- 1 – 1 نمونه برداری خاک… 34

3 – 2- 1 – 2 نمونه برداری آب… 37

3 – 2 – 2 مطالعات آزمایشگاهی.. 38

3 – 2 – 2 – 1 مطالعات آزمایشگاهی نمونه‌های خاک… 38

3 – 2 – 2 – 1 – 1 تعیین بافت خاک… 38

خاک… 39

خاک… 39

3 – 2 – 2 – 1 – 4 تعیین مواد آلی خاک… 39

3 – 2 – 2 – 1 – 5 تعیین کربنات کلسیم معادل.. 40

3 – 2 – 2 – 1 – 6 تعیین اکسیدهای آزاد آهن، آلومینیوم و منگنز. 41

3 – 2 – 2 – 1 – 7 استخراج ترتیبی.. 42

3 – 2 – 2 – 1 – 8 هضم خاک و تعیین فلزات سنگین.. 44

3 – 2 – 2 – 2 مطالعات آزمایشگاهی آب… 44

3 – 3 – 3 آنالیز نتایج و پردازش داده ها 45

فصل چهارم: نتایج و بحث خاک… 46

4 – 1 بررسی نتایج حاصل از تجزیه و اندازه گیری نمونه‌های خاک…. 47

4 – 1 – 1 مقدمه. 47

4 – 1 – 2 نتایج آنالیز عنصری (AAS) نمونه‌های خاک… 47

4 – 1 –  2 – 1 نسبت تمرکز عناصر در خاک… 49

4 – 1 – 3 نتایج آنالیز استخراج ترتیبی.. 51

4 – 1 – 4 تعیین خصوصیات خاک ها 54

4 – 1 – 4 – 1 تعیین بافت… 54

4 – 1 – 4 – 2 EC و   pHخاک… 57

4 – 1 – 4 – 3 کربنات معادل و ماده آلی.. 57

4 – 1 – 4 – 4 اکسیدهای آزاد آهن، آلومینیوم و منگنز. 59

4 – 2 بررسی آلودگی خاک منطقه. 61

 

مقالات و پایان نامه ارشد

 

4 – 2 – 1 مقدمه. 61

4 – 2 – 2 بررسی مقادیر عناصر سرب، روی و کادمیوم در نمونه ها 62

4 – 2 – 2 – 1 عنصر سرب (Pb) 62

4 – 2 – 2 – 2 عنصر روی (Zn) 62

4 – 2 – 2 – 3 عنصر کادمیوم. 63

4 – 2 – 3 محاسبه‌ی شاخص‌ها 63

4 – 2 – 3– 1  شاخص زمین انباشت (Igeo) 63

4 – 2 – 3– 2  فاکتور غنی شدگی (EF) 66

4 – 2 – 3– 2- 1 غنی شدگی سرب… 68

4 – 2 – 3– 2- 2 غنی شدگی روی.. 68

4 – 2 – 3 – 3 شاخص آلودگی مجموع فلزات (MCI) 69

4 – 2 –  3– 4  فاکتور آلودگی.. 71

4 – 2 – 3 – 5 شاخص تجمعی آلودگی (MCd): 74

4 – 2 – 3 – 6  تعیین گونه‌ی عناصر بر اساس استخراج ترتیبی انتخابی.. 74

4 – 2 – 3 – 6 – 1 نتایج حاصل از استخراج ترتیبی سرب… 75

4 – 2 – 3 – 6 – 2 نتایج حاصل از استخراج ترتیبی روی: 77

4 – 2 – 3 – 6 – 3 نتایج حاصل از استخراج ترتیبی کادمیوم. 78

4 – 2 – 1 – 6 – 4 تحرک کادمیوم، سرب و روی در خاک‌های منطقه. 79

4- 2 –  3 – 7 ماتریس همبستگی پارامترهای خاک… 80

فصل پنجم: نتایج و بحث آب… 81

5 – 1 بررسی نتایج حاصل از تجزیه و اندازه گیری نمونه‌های آب… 82

5 – 1 – 1 مقدمه. 82

5 – 1 – 2 بررسی پارامترهای صحرایی pH، EC، TDS و دما در منابع آب منطقه. 82

5 – 1 – 2 – 1 هدایت الکتریکی (EC) 83

5 – 1 – 2 – 2  اسیدیته (pH) 84

5 – 1 – 2 – 3  دما 84

) 84

5 – 1 – 3 اندازه گیری آنیون‌ها و کاتیون‌های اصلی آب… 85

5 – 1 – 3 – 1 درصد خطا یا درصد واکنش…. 85

5 – 1 – 3 – 2 آنیون‌های اصلی منطقه. 86

5 – 1 – 3 – 3 کاتیون‌های اصلی منطقه. 88

5 – 1 – 4 اندازه گیری فلزات سنگین در منابع آب منطقه. 89

5 – 2  تعیین کیفیت آب‌های منطقه. 91

5 – 2 – 1 تعیین کیفیت آب از نظر مصارف آشامیدنی و تیپ آب‌های منطقه. 91

5 – 2 – 1 – 1 نمودار شولر و کیفیت آب آشامیدنی.. 91

5 – 2 – 1 – 2 نمودار پایپر و تعیین تیپ آب‌های منطقه. 92

5  – 2 – 2 تعیین کیفیت آب از نظر مصارف کشاورزی.. 93

5 – 2 – 2 – 1 نسبت جذب سدیم (SAR): 93

5 – 2 – 2 – 2 درصد سدیم ((Na%… 95

5 – 2 –  2 – 3 سدیم کربنات باقی مانده (RSC) 97

5 – 2 – 2 – 4 درصد سدیم محلول (SSP) 97

5 – 2 – 2 – 5 نسبت منیزیم (MR) 98

5 – 2 – 2 – 6 بی‌کربنات سدیم باقی مانده (RSBC) 99

5 – 2 – 2 – 7 سختی کل (TH) 100

5 – 2 – 2 – 8 شاخص نفوذ پذیری (PI): 101

5 – 2 – 2 – 9 شاخص کلروآلکالین (CAI) 102

5 – 2 – 2 – 10 شاخص Kelley. 103

5 – 2 – 3 آلودگی فلزی در آب‌های منطقه. 103

5 – 2 – 3 – 1 شاخص فلزی (MI) 104

5 – 2 – 3 – 2 شاخص آلودگی فلزات سنگین (HPI) 105

5 – 2 – 4 ماتریس همبستگی پارامترهای اندازه گیری شده 106

فصل ششم: نتیجه گیری و پیشنهادات… 108

آلودگی خاک منطقه. 109

آلودگی آب منطقه. 111

پیشنهادات… 112

منابع و مآخذ.. 113

1 مقدمه

یکی از نتایج توسعه شهرنشینی و صنعتی شدن، پیامدهای منفی آن بر منابع طبیعی است (Dimitrovska et al., 2012). امروزه فلزات سنگین از نگرانی‌های عمده‌ی تمامی جوامع می‌باشند  (Kalhori et al., 2012). آلودگی محیط زیست بوسیله‌ی فلزات سنگین بطور عمده به فعالیت‌های انسانی، تولیدات صنعتی، فعالیت‌های کشاورزی، سوزاندن سوخت‌های فسیلی، معدن کاری و فرآوری فلزات بستگی دارد (Pagananelli et al., 2004). نواحی اطراف معادن با غلظت‌های بالایی از فلزات سنگین غنی شده است، و می‌تواند اثرات سمی بر روی گیاهان، حیوانات و انسان‌ها بگذارد (Shikazono et al., 2008). فلزات سنگین بدلیل غیرقابل تجزیه بودن و اثرات فیزیولوژیکی مخرب بر روی موجودات و اکوسیستم‌ها حتی در غلظت‌های کم به عنوان عوامل خطرناک و مخرب برای محیط زیست به شمار آمده و اثرات کوتاه مدت و بلند مدتی را بر آن خواهند داشت. در این میان، کادمیوم و جیوه در رده‌ی اول و مس، کروم، نیکل، سرب و روی در رده‌ی دوم خطرزایی برای اکوسیستم می‌باشند (چراغی و بلمکی، 1386). خاک‌های کشاورزی به طور مستقیم یا غیرمستقیم بر سلامت عمومی تأثیرگذار می‌باشند. در این خاک‌ها آلودگی فلزات سنگین ممکن است سبب دخالت در رشد گیاه و نیز آسیب به سلامت انسان‌ها از طریق ورود به زنجیره غذایی شود (شهبازی و دیگران، 1391).

همچنین آلودگی فلزات سنگین می‌تواند اثرات مضری بر روی منابع آب شیرین مانند سدها، دریاچه‌ها، رودخانه‌ها و آبخوان‌های زیرزمینی داشته باشد (Dong et al., 2009). امروزه در اکثر نواحی از آب‌های زیر زمینی برای مصارف گوناگون و بخصوص کشاورزی استفاده می‌شود (Ashraf et al., 2011). بنابراین در صورت آلودگی، این آب‌ها می‌توانند مشکلاتی را برای موجودات استفاده کننده از این آب‌ها به طور مستقیم یا غیرمستقیم ایجاد کنند. از این رو پایش آب و خاک در مناطق معدنی امری ضروری و مهم است.

از آن جا که زمین­های کشاورزی دشت لنجان در اطراف  معدن سرب و روی ایرانکوه واقع شده‌اند لذا، بررسی منابع آب و خاک این منطقه جهت ارزیابی آلودگی آن‌ ها و بررسی رفتار ژئوشیمیایی فلزات سنگین ضروری است. این پژوهش به منظور نیل به این اهداف انجام شده است.

1 – 1 – 1  فلزات سنگین

به عناصر سمت چپ جدول تناوبی که معمولأ در محلول، تشکیل کاتیون می‌دهند فلز گفته می‌شودفلزات سنگین فلزهایی با عدد اتمی 20 و بزرگتر از آن هستند. عناصر واسطه‌ی آرسنیک (As) و سلنیوم (Se) و نیز سرب (Pb)، جیوه (Hg) و کادمیوم (Cd) بیش‌ترین توجه زیست محیطی را به خود معطوف نموده‌اند (نلسون ایبای، 1390).

منشأ فلزات سنگین و خصوصیات فیزیکو شیمیایی خاک‌ها تعیین کننده‌ی اشکال شیمیایی آن‌ ها در محیط می‌باشند (نلسون ایبای، 1390).

اشکال شیمیایی یک فلز رفتار آن را در محیط و همچنین ظرفیت انتقال مجدد آن را مشخص می‌کند. فاکتورهای اساسی تأثیر گذار بر روی تحرک فلزات عبارت از مقدار مواد ارگانیک، ظرفیت تبادل کاتیونی، بافت خاک،  Eh و pH می‌باشد (Kashem et al., 2011).

بسته به نوع عنصر مهم‌ترین عوامل مؤثر بر تحرک آن نیز تغییر می‌کند (نلسون ایبای، 1390).

1 – 1 – 2 فلزات واسطه‌ی سرب، روی و کادمیوم:

در شرایط قلیایی و pH بالا این عناصر اکسی هیدروکسیدهای انحلال ناپذیر و یا در حضور کربنات، کربنات‌های انحلال ناپذیر تشکیل می‌دهند. در شرایط اسیدی و pH پایین جذب سطحی این فلزات ناچیز بوده ولی با افزایش pH جذب سطحی فرایندی مهم می‌باشد که سبب خروج فلزات از محلول از راه جذب سطحی بر روی ذرات و رسوبات می‌شود. هنگام مواجهه با مواد آلی حل شده (اسیدهای هومیک) این عناصر با ماده‌ی آلی تشکیل کمپلکس می‌دهند. میزان جذب سرب در مواد هومیک بیش‌تر از روی و در روی بیش‌تر از کادمیوم است. اکسی هیدروکسیدهای آهن و منگنز نیز جاذب‌های مناسبی برای این عناصر می‌باشند. در اغلب شرایط اکسایش-کاهش، این عناصر در محلول به صورت گونه‌های کاتیونی دو یا سه ظرفیتی وجود دارند (نلسون ایبای، 1390).

1 – 1 – 3 توزیع فلزات سنگین در محیط

روش‌های متعددی برای تعیین توزیع طبیعی و انسان زاد فلزات در محیط سطحی می‌تواند مورد استفاده قرار گیرد. یکی از این روش‌ها، مطالعه‌ی زمین شیمیایی ناحیه‌ای است که در آن عناصر فلزی به خاک‌ها، رودها و آب زیرزمینی وارد می‌شود. هدف از این گونه مطالعات، جمع آوری اطلاعاتی در مورد غلظت زمینه‌ی فلزات و نواحی با غلظت‌های بالا و بی‌هنجار فلز است. با نمونه برداری از انواع مختلف مواد می‌توان منشأ فلزات موجود در منطقه را تعیین نمود (نلسون ایبای، 1390).

خاک‌ها به عنوان بخشی از اکوسیستم زمینی نقش اکولوژیکی قابل توجهی را در چرخه‌ی عناصر ایفا می‌نمایند. مقدار فلزات سنگین خاک تحت تأثیر چندین فاکتور می‌باشد که عبارت از ترکیب شیمیایی و کانی شناسی سنگ مادر، مقدار مواد ارگانیک، توزیع سایز ذرات، افق‌های خاک، سن، سیستم زهکشی، زندگی گیاهی، دخالت‌های انسان و ورود آئروسول‌ها به خاک است (Gnandi et al., 2002).

1 – 1 – 4 چرخه‌ی طبیعی عناصر

زمین متشکل از چهار مخزن زمین کره (زمین جامد)، آب کره (رودها، دریاچه‌ها، آب‌های زیرزمینی و اقیانوس‌ها)، هواکره (پوشش گازی) و زیست کره (جانداران) می‌باشد. برهم کنش میان این مخازن، انتقال و سرنوشت فلزات مختلف را تعیین می‌کند. به استثنای شار کیهانی بسیار فرعی، منشأ همه‌ی فلزات زمین کره است. هوا کره، زیست کره و آب کره مخازن موقت فلزات به شمار می‌آیند. از طریق فعالیت‌های آتشفشانی ذرات فلزی به صورت‌های غبار و گاز از زمین کره به هواکره وارد می‌شوند. هوازدگی شیمیایی و سیالات ماگمایی سبب ورود فلز به آب کره می‌شود. برای بیش‌تر فلزات هواکره به عنوان یک مخزن بسیار کوتاه مدت عمل می‌کند، زیرا اکسایش مهم‌ترین فرایند در هواکره است. فلزات در فواصل طولانی به شکل ذرات ریز یا هواویزهای گازی انتقال می‌یابند. فلزات در نهایت توسط بارش خشک و‌تر و یا تنفس از جو خارج می‌شوند. گیاهان و جانوران فلزات را از راه تنفس (به شکل گازی)، بلع (خوردن) و جذب عناصر در طی رشد گیاه به دست می‌آورند. فلزات توسط فساد مواد آلی، رسوب گذاری و دفع از زیست کره خارج می‌شوند. سیالات ماگمایی و هوازدگی، دفع توسط گیاهان و جانوران و بارش خشک و ‌تر از فرایندهای انتقال فلز به آب کره می‌باشند. pH، پتانسیل اکسایش-کاهش، و حضور جذب کننده‌هایی چون کانی‌های رسی و اکسی هیدروکسیدها انتقال و زمان ماندگاری فلزات در آب کره را کنترل می‌کنند (نلسون ایبای، 1390).

1 – 1 – 5 چرخه‌های انسانزاد

فعالیت‌هایی همچون کشاورزی و یا ساخت جاده‌ها، به هم ریختگی سطح و تحرک فلز را در پی دارند. معدن کاری فلزات سبب خروج آن‌ ها از سنگ کره می‌شود. بهسازی زمین و دفع پسماند باعث بازگرداندن فلزات به زمین کره و آب کره می‌شوند. ورود انسانزاد فلزات به هواکره از طریق سوزاندن سوخت‌های فسیلی و برخی فعالیت‌های دیگر امکان پذیر است. فلزات موجود در هواکره از طریق تنفس و بلع وارد بدن انسان می‌شوند که اگر از حد مجاز افزایش یابد سبب

موضوعات: بدون موضوع  لینک ثابت
 [ 10:45:00 ق.ظ ]




1-2-2- اهمیت اندازه‌گیری سرب………………………… 5
1-2-3- اهمیت اندازه‌گیری مس…………………………. 6
1-3- روش‌های جداسازی فلزات سنگین…………………….. 7
1-4- جذب سطحی…………………………………….. 7
1-4-2- عوامل موثر بر سرعت جذب سطحی………………….. 8
1-4-3-ترمودینامیک جذب سطحی…………………………. 9
1-4-4- جذب سطحی و ایزوترم‌های جذب…………………… 10
1-5- ایزوترم جذب در سیستم تك جزئی………………….. 11
1-5-1- ایزوترم لانگمویر……………………………. 11
1-5-2- ایزوترم فرندلیچ……………………………. 12
1-6- سینتیک جذب………………………………….. 12
1-7- سیستم‌های جذب سطحی……………………………. 14
1-7-1- سیستم غیر پیوسته…………………………… 14
1-7-2- سیستم بستر ثابت……………………………. 15
1-7-3- بستر ضربه زده……………………………… 16
1-7-4- بستر متحرك پایا……………………………. 16
1-7-5- بستر سیال شده……………………………… 17
1-8- جاذب‌ها……………………………………… 19
1-8-1- جاذب های معدنی…………………………….. 20
1-8-2- جاذب های آلی………………………………. 20
1-8-3- بیوجاذب ها………………………………… 20
1-8-4- ویژگی های كلی جاذب ها………………………. 22
1-9- دسته بندی نانو مواد………………………….. 22
1-9-1- نانوذرات………………………………….. 23
1-9-2- كاربردهای نانو ذرات………………………… 23
1-9-3- خصوصیات ویژه نانوذرات………………………. 24
1-10- معرفی گرافن………………………………… 25
1-11- كاربردهای گرافن…………………………….. 27
1-11-1- ساخت ترانزیستورهای كوچك با بهره گرفتن از گرافن….. 28
1-11-2- ذخیره انرژی………………………………. 29
1-11-3- ساخت تجهیزات نوری، سلول های خورشیدی و نمایشگرهای لمسی انعطاف‌پذیر….. 29
1-11-4- استفاده از گرافن برای كاهش زمان شارژ باطری ها… 29
1-11-5- فیزیک ذرات پرانرژی………………………… 30
1-12- كلیاتی در موردكربن فعال……………………… 30
1-12-1- مواد اولیه تهیه كربن فعال………………….. 32
1-12-2- ساخت كربن فعال از ضایعات كشاورزی……………. 34
1-12-3- مراحل ساخت كربن فعال………………………. 34
1-12-4- فعال سازی كربن……………………………. 35
1-13- مروری بر كارهای انجام شده……………………. 36
1-14- معرفی درخت كنار…………………………….. 38
فصل دوم :بخش تجربی

مقالات و پایان نامه ارشد

 

2-1- مواد شیمیایی مورد نیاز……………………….. 40
2-2- دستگاه های مورد استفاده………………………. 40
2-3- تهیه جاذب زغال فعال برگ درخت كنار……………… 40
2-4- محلول سازی………………………………….. 41
2-4-1- تهیه محلول های سرب، مس و روی………………… 41
2-5- روش کلی آزمایش ها……………………………. 42
2-6-بهینه کردن پارامترها………………………….. 43       
2-7-آزمایش های بررسی اثر مقدارجاذب برمیزان جذب………. 43
2-8-آزمایش های بررسی اثر pHبرمیزان سرب ومس و روی توسط جاذب برگ برگ درخت کنار اصلاح شده وجاذب نانوگرافن…. 43
2-9- آزمایش های بررسی اثر دما بر جذب سطحی فلزات سنگین (سرب، مس و روی) برروی دو جاذب برگ درخت کنار اصلاح شده و جاذب نانوگرافن………..44
2-10- آزمایش های بررسی اثر زمان بر جذب سطحی فلزات سنگین (سرب، مس و روی…….44
2-11-آزمایش های بررسی اثر غلظت اولیه محلول فلز سنگین (سرب، مس و روی) بر روی جذب سطحی… 45
2-12- انجام آزمایش های تعادلی……………………… 45
 فصل سوم:نتایج و بحث
3-1- بررسی اثر مقدار جاذب…………………………. 48
3-2- برسی اثرpH………………………………….. 51
3-3- بررسی اثردما بر جذب سطحی……………………… 54
3-4- بررسی اثر زمان تماس بین جاذب و جذب شونده……….. 57
3-5-بررسی مدل های سینتیک جذب………………………. 60
3-6- بررسی اثر غلظت اولیه بر جذب سطحی………………. 65
3-7- بررسی نحوه پیروی نتایج بامدل های ایزوترم جذب سطخی.. 66
3-8- بررسی ترمودینامیک جذب………………………… 70
3-9- مقایسه عملکرد جاذب زغال فعال برگ درخت کنار با جاذب زغال فعال برگ درخت کنار اصلاح شده با نانوگرافن… 72
منابع فارسی……………………………………… 73
منابع غیرفارسی…………………………………… 74
چکیده لاتین………………………………………. 76
چکیده:
هدف از انجام این پژوهش، حذف فلزات سنگین سرب، مس و روی از محلول های آبی با بهره گرفتن از ذغال فعال تولید شده از برگ درخت كنارو برگ درخت کنار اصلاح شده با گرافن میباشد.
در این مطالعه تاثیرpH ، زمان تماس ، دوز جاذب و دما بر روی میزان جذب این فلزات بر روی سطوح جاذب برگ درخت کنار  و برگ درخت کنار به همراه 01/0 گرافن بررسی شده اند. ایزو- ترم های جذب سطحی لانگمویر و فرندلیچ نیز مورد بررسی قرار گرفته اند. توابع ترمودینامیکی مربوط به جذب نیز تعیین شده اند . معادلات سینتیکی شبه مرتبه اول و شبه مرتبه دوم و همچنین نفوذ درون ذره ای نیز برای جذب سطحی مورد نظر بررسی شده اند.
فصل اول: مقدمه و تئوری
1-1- مقدمه
جریان پساب‌های خروجی از صنایع مختلف عمدتاً حاوی مقادیر متفاوتی فلزات سنگین می‌باشد علاوه براین آب های زیر زمینی نیز با توجه به محل استخراج، حاوی مقداری از این فلزات می‌باشند. پساب خروجی از صنایع پتروشیمی‌ و پالایشگاه‌های نفت و گاز، صنایع ریخته گری، صنایع تولید شیشه و…. حاوی مقادیر قابل توجهی فلزات سنگین از جمله سرب، مس، جیوه، روی و كادمیم می‌باشد. اكثر این فلزات سمی‌ می‌باشند. تخلیه این پساب‌ها در محیط باعث ایجاد مشكلات زیست محیطی می‌شود. این فلزات وارد زنجیره غذایی انسان شده و در بافت زنده تجمع میکنند. ارتباط انسان با فلزات سنگین در ده‌های اخیر و با ورود تکنولوژی و توسعه صنایع شیمیایی رو به افزایش بوده است[1].
استفاده از فلزات در فرایند‌های صنعتی و محصولات تولیدی امروز نمودهایی از آن هستند: از جمله جیوه در پر كردن دندان استفاده می‌شود، سرب در بنزین خودروها وجود دارد كه هر روزه با افزایش تعداد خودروها مقدار این فلز سنگین در محیط زیست خصوصاً شهرهای بزرگ رو به افزایش است. همچنین سرب در رنگ‌ها، مواد آرایشی، شامپوها و دیگر موادی كه برای مو استفاده می‌شود وجود دارد. دهان شویه‌ها، خمیر دندان و صابون‌ها نیز حاوی مقادیری فلزات سنگین از جمله سرب می‌باشند.
در جوامع صنعتی امروز، گریزی از مواد شیمیایی و فلزات سمی‌نیست. خصوصاً كه خیلی از مشاغل و حرفه‌ها مستلزم قرار گرفتن در معرض فلزات سنگین هستند. افراد در تنها بیش از 50 شغل مستلزم برخورد با جیوه هستند، مثل: پزشكان، كاركنان كارخانجات داروسازی، نقاش‌ها، كاركنان چاپ‌خانه‌ها، فلزكارها، جوشكار‌ها ، دكورسازها و سفالگرها.
تحقیقاتی كه روی اثرات سمی‌فلزات سنگین انجام شده، تائید می‌كنند كه این مواد می‌توانند مستقیماً با مختل كردن عوامل مغزی و عصبی بر رفتار انسان اثر بگذارند. فلزات سنگین بر مواد انتقال دهنده پیام‌های عصبی و عملكرد آنها تاثیر دارند و فرایندهای متابولیكی بی‌شماری در بدن را تغییر می‌دهند. سیستم‌هایی كه عناصر فلزی سمی، می‌توانند آنها را تخریب كنند یا كارشان را با مشكل مواجه كنند جاهایی مثل: خون و عروق قلبی،مسیرهای سم زدایی بدن و  مسیرهای تولید انرژی، آنزیم ها، سیستم گوارشی، ایمنی، اعصاب مركزی و محیطی، تولید مثل و مجاری ادراری هستند .
تنفس ذرات فلزات سنگین، حتی در مقادیر كم می‌توانند اثر جدی روی سلامت انسان داشته باشند. فلزات سنگین می‌توانند واكنش‌هایی حساسیتی را افزایش دهند، جهش‌های ژنتیكی ایجاد كنند، با عناصر كمیاب مفید برای بدن در واكنش‌هایی بیوشیمیایی رقابت كنند و نیز مثل آنتی‌بیوتیك‌ها عمل كنند و هر دو دسته مفید و مضر باكتریها را از بین ببرند. بیشتر اثر تخریبی فلزات سمی، ناشی از افزایش اكسید شدن رادیكال‌های آزاد توسط آنها است. رادیكال‌های آزاد به طور طبیعی وقتی  سلول‌ها با اكسیژن واكنش می‌دهند (اكسایش) تولید می‌شوند. اما در حضور فلزات سنگین سمی‌یا كمبود آنتی اكسیدان‌ها، به صورت كنترل نشده ای تولید می‌شوند. آنتی اكسیدان‌ها مثل ویتامین‌های A, C, E فعالیت رادیكال‌های آزاد را كم می‌كنند.
فلزات سنگین همچنین می‌توانند اسیدیته خون را افزایش دهند و بدن برای حفظ pH مناسب خون، كلسیم را از استخوان‌ها بیرون می‌كشد. به علاوه فلزات سنگین شرایطی را ایجاد می‌كنند كه منجر به التهاب در شریان‌ها و بافت‌ها می‌شوند كه خود باعث خروج بیشتر كلسیم به سمت بافت‌ها به عنوان بافر می‌شود اما مشكل دیگری ایجاد میشود، به طور مثال، سخت شدن دیواره شریان و انسداد پیشرونده.
اگر جای كلسیم از دست رفته پر نشود برداشت دائمی‌این ماده معدنی مهم از استخوان‌ها باعث پوكی استخوان می‌شود. مطالعاتی نشان می‌دهد كه هر مقدار جزئی از عناصر سمی، نتایج منفی بر سلامتی دارند. كودكان و سالخوردگان كه سیستم ایمنی ضعیف تری دارند در مقابل مسمومیت با این مواد، آسیب پذیرند.
2-1- اهمیت اندازه‌گیری یون های فلزی:
1-2-1- اهمیت اندازه‌گیری روی
روی برای ساخت كلاژن، جهت استحكام پوست و مو ضروری است. این عنصر با دارا بودن خواص آنتی اكسیدانی از پوست در مقابل اثرات نامطلوب اشعه فرابنفش خورشید محافظت می‌كند[1].
تحقیقات نشان داده اند این عنصر دارای خواص ضد آكنه و ضد التهابی بوده و در تسریع و ترمیم زخمهای پوستی نقش دارد[1]. فلز روی در تقویت سیستم ایمنی نقش بسزایی ایفا می‌كند و از بروز بیماری ها خصوصاً سرماخوردگی جلوگیری می‌كند. در بهبود حس چشایی خصوصاً در سالمندان نقش دارد.

موضوعات: بدون موضوع  لینک ثابت
 [ 10:45:00 ق.ظ ]
 
مداحی های محرم