یکی ­از مراحل مهم و اساسی در مهندسی ­و تولید نرم­افزار مرحله یافتن و رفع خطا­های موجود در نرم­افزار است. این مرحله از تولید نرم­افزار جزء وقت­گیرترین و پرهزینه ­ترین مراحل به­ حساب  می­آید]4[. سال­هاست که دانش داده ­کاوی و استخراج دانش به کمک مهندسین نرم­افزار آمده­است. رفع خطا در فرایند تولید بسته به مدل توسعه نرم­افزار چندین بار انجام می­گیرد. خطا­ها و مشکلات برطرف ­شده معمولا به روش­های مختلف تحت عنوان مخازن خطای نرم افزار، مستند­سازی و ذخیره می­ شود. این مخازن منابع عظیم دانش هستند، که کمک بزرگی در تسریع زمان تولید نرم­افزار و پایین­آوردن هزینه­ها خواهد­بود]5[. روش­هایی نیاز­است که این دانش و اطلاعات مفید استخراج شود. در این تحقیق روشی برای سرعت بخشیدن به رفع­خطای جدید با بهره گرفتن از اطلاعات موجود در مخازن خطای نرم­افزار، ارائه شده­است. مدل­های زیادی تا به­حال ارائه ­شده که یا مکمل هم بوده یا از الگوریتم­های جدید استفاده شده­است. مدل­های پیشنهادی با بهره گرفتن از تشابه متن همگی از الگوریتم­های معمولی و ساده استفاده کرده اند. در این مدل ها به این نکته مهم کمتر توجه شده که مخازن حجم بالا و پیچیده­ای از اطلاعات را شامل می­شوند، که بعضاً تشابه بین کلمات و معانی مختلف یک جمله نتیجه ­گیری را سخت­تر می­ کند. پس نیاز به الگوریتم­های معنایی در بررسی تشابه متن احساس می­ شود. هم

مقالات و پایان نامه ارشد

چنین باید به این نکته مهم توجه کرد که الگوریتم معنایی انتخاب ­شده بهینه است و قادر باشد میان این حجم اطلاعات که از سوی کاربران مختلف ثبت می­ شود، بهترین جواب با تشابه بیشتر را انتخاب کند. اگرچه تا به­حال روش­های بسیاری برای تکمیل مخازن خطا و استفاده از دانش نهفته در آن صورت­ گرفته اما می­توان گفت که ضرورت اهمیت به تشابه معنایی بین داده ­ها در نظر گرفته نشده ­است. در این تحقیق سعی شده که این ضعف در جستجو و بهره­ گیری دانش نهفته در این مخازن داده پوشش داده ­شود.




 
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...