کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


جستجو



 



فهرست مطالب

عنوان                                                                                     صفحه

چکیده‌ی فارسی……………………………………………………………………………………………………………………………1

فصل اول: مقدمه

1-1- آلکید رزین…………………………………………………………………………………………………………………………3

1-1-1- ساختار شیمیایی و روش های ساخت آلکید رزین………………………………………………………………..4

1-1-1-1- روش الکل‌کافت……………………………………………………………………………………………………..5

1-1-1-2- روش اسید چرب……………………………………………………………………………………………………6

1-1-2- مواد اولیه جهت ساخت آلکید رزین………………………………………………………………………………..7

1-1-3- انواع آلکید رزین…………………………………………………………………………………………………………..9

1-1-3-1- نوع اسید چرب و یا روغن به کار رفته………………………………………………………………………9

1-1-3-2- مقدار وزنی اسید چرب و یا روغن به کار رفته………………………………………………………….10

1-1-4- خواص رنگهای حاصل از آلکید رزین……………………………………………………………………………10

1-2- نانورُس…………………………………………………………………………………………………………………………….11

1-2-1- ترکیب شیمیایی…………………………………………………………………………………………………………..11

1-2-2- بلورشناسی…………………………………………………………………………………………………………………12

1-2-3- ساختار میکروسکوپی و مورفولوژی MMT……………………………………………………………………14

1-2-4- تبادل کاتیونی MMT…………………………………………………………………………………………………..15

1-2-4-1- ظرفیت تبادل کاتیونی MMT………………………………………………………………………………….15

1-2-5- اصلاح نمودن رس………………………………………………………………………………………………………15

1-2-5-1- یونهای آلکیل‌آمونیوم……………………………………………………………………………………………..16

1-2-5-2- سیلانها………………………………………………………………………………………………………………..17

1-2-6- انواع نانورس………………………………………………………………………………………………………………17

1-2-7- کاربردهای نانورس………………………………………………………………………………………………………18

1-2-8- خواص نانورس‌ها……………………………………………………………………………………………………….19

1-3- نانوآمیزه‌ی پلیمریِ رس………………………………………………………………………………………………………20

1-3-1- تکنیک‌های ساخت نانوآمیزه‌های پلیمر/رس…………………………………………………………………….20

1-3-1-1- بسپارشِ درجا………………………………………………………………………………………………………20

1-3-1-2- محلول…………………………………………………………………………………………………………………21

1-3-1-3- ذوب…………………………………………………………………………………………………………………..22

1-4- هدف از پژوهش جاری………………………………………………………………………………………………………23

فصل دوم: مروری بر تحقیقات انجام شده

2-1- بررسی مطالعات پژوهشی اخیر……………………………………………………………………………………………25

فصل سوم: مواد و روشها

3-1- مواد شیمیایی…………………………………………………………………………………………………………………….38

3-2- دستگاهوری………………………………………………………………………………………………………………………38

3-3- روش‌ها…………………………………………………………………………………………………………………………….39

3-3-1- اصلاح نانو ذرات رس MMT-Na با بهره گرفتن از روغن بزرک…………………………………………….39

3-3-2- سنتز پیش‌پلیمر آلکیدی متوسط روغن بر پایه‌ی روغن بزرک…………………………………………….40

3-3-3- تهیه‌ی آلکید رزین و نانوآمیزه‌های آلکید رزین/ رس………………………………………………………..42

فصل چهارم: نتایج و بحث

4-1- سنتز نمونه‌ها……………………………………………………………………………………………………………………..46

4-1-1- اصلاح نانو ذرات رس MMT-Na با بهره گرفتن از روغن بزرک…………………………………………….46

4-1-2- سنتز پیش‌پلیمر آلکیدی متوسط روغن بر پایه‌ی روغن بزرک…………………………………………….48

4-1-3- تهیه‌ی آلکید رزین……………………………………………………………………………………………………….51

4-1-4- تهیه‌ی نانوآمیزه‌ی آلکید رزین/LOM-MMT…………………………………………………………………..52

4-1-5- تهیه‌ی نانوآمیزه‌ی آلکید رزین/Na-MMT………………………………………………………………………54

4-2- آنالیز نمونه‌ها…………………………………………………………………………………………………………………….55

4-2-1- طیف‌های IR………………………………………………………………………………………………………………55

4-2-2- دیفرکتوگرام‌های XRD………………………………………………………………………………………………..60

4-2-3- تصاویر SEM……………………………………………………………………………………………………………..62

4-2-4- آنالیزهای توزین حرارتی………………………………………………………………………………………………66

4-2-5- آزمون مکانیکی سختی…………………………………………………………………………………………………69

فصل پنجم: نتیجه‌گیری

منابع………………………………………………………………………………………………………………………………………….80

پیوست………………………………………………………………………………………………………………………………………85

چکیده‌ی انگلیسی……………………………………………………………………………………………………………………….90

فهرست جدول‌ها

عنوان                                                                                     صفحه

پایان نامه

 

جدول (1-1)- تعداد پیوندهای دوگانه‌، درصد اسیدهای

چرب سازنده‌ و عدد یُدی روغن‌ها………………………………………………………………………………………………….8

جدول (2-1)- فرمول‌بندی آلکید رزین‌های تهیه شده……………………………………………………………………..26

فهرست شکل‌ها

عنوان                                                                                     صفحه

شکل (1-1)- واکنش تشکیل یک گلیپتال………………………………………………………………………………………..3

شکل (1-2)- واکنش روش الکل‌کافت……………………………………………………………………………………………6

شکل (1-3)- واکنش روش اسید چرب…………………………………………………………………………………………..7

شکل (1-4)- واکنش تشکیل یک روغن تری‌گلیسرید………………………………………………………………………8

شکل (1-5)- ساختار Na-MMT…………………………………………………………………………………………………13

شکل (1-6)- دیفرکتوگرام پراش اشعه‌ی ایکسِ Na-MMT…………………………………………………………….13

شکل (1-7)- لایه، ذره‌ی اولیه و توده‌ی رس…………………………………………………………………………………14

شکل (1-8)- تصویر SEM مونت‌موریلونیت…………………………………………………………………………………14

شکل (1-9)- اصلاح رس توسط یونهای آلکیل‌آمونیوم……………………………………………………………………16

شکل (1-10)- هیدرولیز سیلان و اصلاح MMT توسط سیلانول……………………………………………………..17

شکل (1-11)- ساختار اصلاح کننده‌ی Cloisite® 30B…………………………………………………………………..18

شکل (1-12)- روش بسپارش درجا……………………………………………………………………………………………..21

شکل (1-13)- حالت ایده‌آل ساخت نانوآمیزه در روش بسپارش درجا……………………………………………..21

شکل (1-14)- روش محلول……………………………………………………………………………………………………….22

شکل (1-15)- حالت ایده‌آل ساخت نانوآمیزه در روش محلول……………………………………………………….22

شکل (1-16)- روش ذوب………………………………………………………………………………………………………….23

شکل (1-17)- حالت ایده‌آل ساخت نانوآمیزه در روش ذوب………………………………………………………….23

شکل (2-1)- ساختار شیمیایی روغن کارانجا…………………………………………………………………………………25

شکل (2-2)- تصویر SEM نمونه‌ی K-AR 1……………………………………………………………………………….26

شکل (2-3)- ترموگرام TGA رزین‌های سخت شده:

(a) K-AR 1, (b) K-AR 2, © K-AR 3, (d) K-AR 4, (e) K-AR 5, (f) K-AR 6…………………………27

شکل (2-4)- ساختار شیمیایی پلی‌اتیلن‌ترفتالات…………………………………………………………………………….28

شکل (2-5)- ساختار شیمیایی BHET………………………………………………………………………………………….28

شکل (2-6)- ترموگرام TGA آلکید رزین‌های تهیه شده…………………………………………………………………29

شکل (2-7)- طرح تهیه‌ی نانوآمیزه‌ی پلی استر/ رس………………………………………………………………………30

شکل (2-8)- دیفرکتوگرام XRD نمونه‌ها:

(a) پلیمر، (b) نانوآمیزه‌ی %1، © نانوآمیزه‌ی %5/2، (d) نانوآمیزه‌ی %5 و (e) نانورس MMT……………….31

شکل (2-9)- تصاویر SEM نمونه‌ها:

(a) پلیمر، (b) نانوآمیزه‌ی %1، © نانوآمیزه‌ی %5/2 و (d) نانوآمیزه‌ی %5……………………………………………31

شکل (2-10)- تصاویر TEM نمونه‌ها:

(a) نانوآمیزه‌ی %1، (b) نانوآمیزه‌ی %5/2 و © نانوآمیزه‌ی %5…………………………………………………………..32

شکل (2-11)- ترموگرام TGA نمونه‌های تهیه شده:

(a) پلیمر، (b) نانوآمیزه‌ی %1، © نانوآمیزه‌ی %5/2 و (d) نانوآمیزه‌ی %5……………………………………………32

شکل (2-12)- تصاویر SEM نمونه‌ها بعد از تخریب باکتریایی:

(a) پلیمر، (b) نانوآمیزه‌ی %1، © نانوآمیزه‌ی %5/2 و (d) نانوآمیزه‌ی %5……………………………………………33

شکل (2-13)- دیفرکتوگرام XRD نمونه‌ها……………………………………………………………………………………34

شکل (2-14)- تصاویر SEM نمونه‌های TPU-S:

(a) پلیمر، (b) آمیزه‌ی %1 وزنی و © آمیزه‌ی %3 وزنی……………………………………………………………………35

شکل (2-15)- تصاویر SEM نمونه‌های TPU-E:

(a) پلیمر، (b) آمیزه‌ی %1 وزنی، © آمیزه‌ی %3 وزنی و (d) آمیزه‌ی %10 وزنی………………………………….36

شکل (3-1)- نمایی از کار آزمایشگاهی انجام شده به منظور سنتز LOM-MMT……………………………….40

شکل (3-2)- نمایی از کار آزمایشگاهی انجام شده برای سنتز پیش‌پلیمر آلکید رزین…………………………..41

شکل (4-1)- افزایش چند مرحله‌ای فاصله‌ی بین لایه‌های نانورس…………………………………………………..45

شکل (4-2)- طرح اصلاح Na-MMT………………………………………………………………………………………….47

شکل (4-3)- طرح مرحله‌ی الکل‌کافت روغن بزرک توسط گلیسرول……………………………………………….49

شکل (4-4)- طرح مرحله‌ی استری شدن………………………………………………………………………………………50

شکل (4-5)- طرح خشک شدن آلکید رزین توسط اکسیژن…………………………………………………………….51

شکل (4-6)- مکانیسم تشکیل رادیکال‌های آزاد در دو سیستم الف) مزدوج و ب) غیرمزدوج (روغن بزرک)……………………………………………………………………………………………………………………………………….52

شکل (4-7)- ساختار نانوآمیزه‌ی آلکید رزین/LOM-MMT……………………………………………………………53

شکل (4-8)- ساختار نانوآمیزه‌ی آلکید رزین/ Na-MMT……………………………………………………………….54

شکل (4-9)- طیف فروسرخ Na-MMT………………………………………………………………………………………56

شکل (4-10)- طیف فروسرخ محصول واکنش Na-MMT با APTES…………………………………………….57

شکل (4-11)- طیف فروسرخ LOM-MMT………………………………………………………………………………..58

شکل (4-12) طیف FT-IR آلکید رزین سنتز شده………………………………………………………………………….59

شکل (4-13) طیف FT-IR آلکید رزین کاگلار و همکاران……………………………………………………………..59

شکل (4-14)- دیفرکتوگرام XRD نانو ذره‌ی Na-MMT………………………………………………………………..61

شکل (4-15)- دیفرکتوگرام XRD نانو ذره‌ی LOM-MMT……………………………………………………………62

شکل (4-16)- تصاویر SEM نانو ذره‌ی Na-MMT در بزرگنمایی‌های مختلف…………………………………63

شکل (4-17)- تصاویر SEM نانو صفحات LOM-MMT در بزرگنمایی‌های مختلف…………………………64

شکل (4-18)- تصویر SEM آلکید رزین خالص……………………………………………………………………………65

شکل (4-19)- تصاویر SEM نانوآمیزه‌ی 5/2 درصد وزنی آلکید رزین/Na-MMT در بزرگنمایی‌های مختلف………………………………………………………………………………………………………………………………………65

شکل (4-20)- تصاویر SEM نانوآمیزه‌ی 5/2 درصد وزنی آلکید رزین/LOM-MMT در بزرگنمایی‌های متفاوت……………………………………………………………………………………………………………………………………..66

شکل (4-21)- ترموگرام TGA و DTG آلکید رزین خالص……………………………………………………………67

شکل (4-22)- ترموگرام TGA و DTG نانوآمیزه‌ی آلکید رزین/Na-MMT………………………………………68

شکل (4-23)- ترموگرام TGA و DTG نانوآمیزه‌ی آلکید رزین/LOM-MMT………………………………….68

شکل (4-24)- نتایج حاصل از آزمون مکانیکی ریزسختی ویکرز……………………………………………………..70

شکل (5-1)- مقایسه‌ی طیف‌های IR (به ترتیب از بالا به پایین) Na-MMT، محصول واکنش Na-MMT با APTES و LOM-MMT…………………………………………………………………………………………………………73

شکل (5-2)- مقایسه‌ی دیفرکتوگرام‌های XRD نانو ذرات Na-MMT و LOM-MMT………………………74

شکل (5-3)- مقایسه‌ی مورفولوژی نانو ذره‌ی Na-MMT با LOM-MMT

در دو بزرگنمایی متفاوت……………………………………………………………………………………………………………..75

شکل (5-4)- مقایسه‌ی مورفولوژی نانوآمیزه‌ی 5/2 درصد وزنی آلکید رزین/Na-MMT و نانوآمیزه‌ی 5/2 درصد وزنی آلکید رزین/LOM-MMT در دو بزرگنمایی متفاوت……………………………………………………..76

شکل (5-5)- مقایسه‌ی ترموگرام‌های TGA آلکید رزین خالص، نانوآمیزه‌ی آلکید رزین/Na-MMT و          نانوآمیزه‌ی آلکید رزین/LOM-MMT……………………………………………………………………………………………78

شکل (5-6)- نتایج حاصل از آزمون مکانیکی ریزسختی ویکرز……………………………………………………….79

چکیده

در این پژوهش، میان­زایی نانولایه ­های مونت­موریلونیت با بخش­های آلیِ طویل طی یک فرایند دو- مرحله‌ایِ متوالی انجام شد. در ابتدا، (3-آمینوپروپیل)ترای­اتوکسی­سیلان (APTES) از طریق واکنش با گروه­های OH لبه­ای باعث NH2-عامل­دارشدن نانولایه ­ها شد. در ادامه، به منظور افزایش بیشتر خصلت آلی­دوستی نانولایه ­های معدنی و نیز افزایش میزان میان­زایی، مونت­موریلونیت عامل­دارشده­ با آمین با اتصال­های استری موجود در ساختار مولکول­های روغن بزرک واکنش داده ­شد. این عمل به زنجیرهای آلکیلی بلند اجازه داد تا به طور کووالانسی با تشکیل گروه­های آمیدی به نانولایه ­های خاک متصل ­شوند. اندازه ­گیری­های XRD نشان داد که این تلاش ساده منجر به افزایشی قابل توجه در متوسط فاصله­ بنیادی مونت­موریلونیت اصلاح­شده تا حد 96/0 نانومتر شد. از روغن بزرک در کنار گلیسرول و فتالیک­انیدرید به عنوان ماده اولیه برای تهیه­ آلکید رزین نیز استفاده شد. نانوخاک­رس اصلاح­شده با روغن بزرک (LOM-MMT) در طی فرایند سنتز آلکید رزین پایه-روغنی به ظرف واکنش افزوده شد (5/2 درصد وزنی) و سپس به طور یکنواخت در آن پخش گردید. برای مقایسه­ نتایج بدست­آمده و ارزیابی اثر اصلاح نانولایه ­ها بر رفتار فیزیکی و حرارتی ماتریس آلکید رزین، دو نمونه­ شاهد شامل رزین آلکیدی فاقد مونت­موریلونیت و نیز آلکید رزین دارای مونت­موریلونیت اصلاح­نشده نیز سنتز شدند. نمونه­های بدست­آمده با تکنیک­هایی همچون FT-IR، میکروسکوپی الکترونی روبشی (SEM)، آزمون سختی ویکرز (VHT) و نیز آنالیز گرماوزنی (TGA/DTG) بررسی شدند. در مجموع، با توجه به نتایج بدست­آمده معلوم شد که نانولایه ­های LOM-MMT به دلیل خصلت آلی­دوستی زیادتر در قیاس با مونت­موریلونیت اصلاح­نشده سازگاری بیشتری با ماتریسِ آلکید رزین از خود نشان می­دهند.

کلیدواژه‌ها: مونت‌موریلونیت، فاصله‌ بنیادی، اصلاح نانورس، روغن بزرک، نانولایه، نانوآمیزه‌های آلکید رزین- رس.

فصل اول

 

1- مقدمه

 

1-1- آلکید رزین

واژه‌ی آلکید نخستین بار در سال 1927 میلادی توسط کینل برای مشخص کردن مواد پلیمری حاصل از واکنش اسید‌ها و الکل‌های چند عاملی بیان شد. (al از واژه‌ی الکل و cid از واژه‌ی اسید که با ترکیب آنها، کلمه‌ی آلکید با تغییر از شکل اصلی واژه یعنی Alcid به Alkyd به  وجود آمده است) (جانز، 2003). آلکید کلیه‌ی پلی‌استرهای گرمانرم و گرماسخت، چه سیرشده و چه سیرنشده را شامل می‌شود. در حال حاضر این واژه شامل تمام پلی‌استرهای اصلاح شده نیز می‌شود. از آنجا که هنگام ساخت آلکید رزین، آب به عنوان محصول جانبی واکنشِ استری‌شدن تولید می‌گردد، واکنشِ حاصل از نوع بسپارشِ تراکمی است (هافلند، 2012). نخستین گزارش ارائه شده در مورد تهیه‌ی یک آلکید به برزلیوس از کشور سوئد تعلق دارد. نامبرده در سال 1847، گلیسرول تارتارات تهیه نمود. در سال 1901 دانشمندی انگلیسی به نام اسمیت، گلیسرول را با فتالیک‌انیدرید استری نمود. وی چندین واکنش بین فتالیک‌انیدرید و گلیسرول تحت شرایط مختلف انجام داد و یکسری محصولات شیشه‌ای شکل بدست آورد. چند سال بعد یک کمپانی بزرگ در ایالات متحده‌ی آمریکا، شخصی به نام فرد برگ را که روی این مواد تحقیق می‌کرد استخدام نمود تا وی تحقیقات خود را بر روی این دسته از مواد ادامه دهد. مواد حاصل از این تحقیقات به گلیپتال‌ها معروف گردیدند. واکنش تشکیل یک گلیپتال در شکل (1-1) نشان داده شده است.

شکل (1-1)- واکنش تشکیل یک گلیپتال

این کارهای اولیه و نتایج حاصل از آن انگیزه‌ای شد تا کمپانی مزبور در بین سالهای 1910 تا 1916، تحقیقات مفصل‌تری را روی این گونه رزین‌ها انجام دهد.

آلکید‌ها اولین بار به عنوان ماده‌ای برای چسباندن ورقه‌های میکا مورد توجه قرار گرفتند و بعد‌ها برای عایق‌سازی در صنایع الکتریکی مورد استفاده قرار گرفتند. با مصرف روز افزون این دسته از مواد پلیمری، شیمیدانان به فکر اصلاح آنان

موضوعات: بدون موضوع  لینک ثابت
[یکشنبه 1399-09-30] [ 11:06:00 ب.ظ ]




 

فهرست مطالب

عنوان                                                                                                         صفحه
چکیده ……………………………………………………………………………………………………..  1
مقدمه………………………………………………………………………………………………………..2
بخش اول مطالعات کتابخانه ای……………………………………………………………………………3
1-1-اهداف تحقیق………………………………………………………………………………………….4
1-2-فرضیه ها……………………………………………………………………………………………..4
1-3-غشا……………………………………………………………………………………………………4
1-4-تقسیم بندی غشا……………………………………………………………………………………….5
1-4-1-تقسیم بندی بر اساس مکانیسم حاکم بر جداسازی………………………………………………..5
1-4-2-تقسیم بندی بر اساس جنس غشا…………………………………………………………………..5
1-4-2-1-غشاهای پلیمری………………………………………………………………………………..6
1-4-2-2-غشاهای مایع……………………………………………………………………………………6
1-4-2-3-غشاهای سرامیکی……………………………………………………………………………..6
1-4-2-4-غشاهای فلزی…………………………………………………………………………………..7
1-4-3-تقسیم بندی بر اساس شکل هندسی غشا…………………………………………………………..9
1-4-4-تقسیم بندی بر اساس ساختار غشا………………………………………………………………..9
1-5-ویژگی های غشاها………………………………………………………………………………….10
1-6-کاربردهای غشا…………………………………………………………………………………….10
1-7-فرایندهای غشایی…………………………………………………………………………………..11
1-7-1-اسمز معکوس……………………………………………………………………………………11
1-7-2-نانوفیلتراسیون……………………………………………………………………………………11
1-7-3-اولترافیلتراسیون…………………………………………………………………………………12
1-7-4-میکروفیلتراسیون………………………………………………………………………………..14
1-8-کامپوزیت……………………………………………………………………………………………14
1-8-1-کامپوزیت چیست؟……………………………………………………………………………….14
1-8-2-از کاهگل تا کامپوزیت های پیشرفته…………………………………………………………..15
1-6-3-کاربردهای دیگر کامپوزیت ها…………………………………………………………………16
1-8-4- ساخت کامپوزیت……………………………………………………………………………….17
1-8-5-روش های ساخت نانوکامپوزیت……………………………………………………………….18
1-9-کاربرد تکنولوژی غشا…………………………………………………………………………….19
1-10-محورهای اصلی کاربرد غشاها…………………………………………………………………19
1-10-1صنعت آب و فاضلاب………………………………………………………………………….19
1-10-2-صنایع غذایی…………………………………………………………………………………..20
1-10-3-صنایع دارویی و پزشکی……………………………………………………………………..20
1-10-4-تصفیه هوا و خالص سازی گازها……………………………………………………………20
1-10-5-کاربردهای دیگر………………………………………………………………………………21
1-11-غشاهای بستر آمیخته……………………………………………………………………………..21
1-12-انواع غشاها……………………………………………………………………………………….22
1-13-مدل حلالیت نفوذ………………………………………………………………………………….22
1-14-تجهیزات لازم بررسی ساختار عملکرد غشاها…………………………………………………25
1-15-تاریخچه گسترش غشا…………………………………………………………………………….25
1-16-تاریخچه غشاهای بستر آمیخته…………………………………………………………………..26
بخش دوم: مواد، تجهیزات و کارهای تجربی…………………………………………………………..28
2-1-انتخاب مناسب فاز پلیمری…………………………………………………………………………29
2-1-1-غشای پلیمر پلی سولفون………………………………………………………………………..29
2-1-2-دلایل انتخاب نانوکلی و نانوسیلیکا و پلیمر…………………………………………………….31
2-2-کارهای تجربی……………………………………………………………………………………..33
2-2-1-مواد و تجهیزات…………………………………………………………………………………33
2-2-2-ساخت غشا……………………………………………………………………………………….33

مقالات و پایان نامه ارشد

 

2-2-2-1-ساخت فیلم غشای پلیمری اولترافیلتراسیون PSf…………………………………………..33
2-2-2-2-ساخت غشاهای نانوکامپوزیتی………………………………………………………………34
2-2-3-شار آب خالص…………………………………………………………………………………..35
2-2-3-1-مدول غشایی………………………………………………………………………………….35
2-2-3-2-آزمون تراوش…………………………………………………………………………………35
2-2-3-3-نحوه انجام آزمایش ها………………………………………………………………………..35
2-2-3-4-محاسبه میزان آب خالص عبوری غشا……………………………………………………..36
2-3-روش های ارزیابی ساختاری……………………………………………………………………..36
بخش سوم: نتایج و بحث…………………………………………………………………………………37
3-1-ارزیابی ساختاری………………………………………………………………………………….38
3-1-1-طیف سنجی مادون قرمز تبدیل فوریه (FTIR) ……………………………………………..38
3-1-2-آنالیز میکروسکوپ الکترونی روبشی (FESEM)………………………………………….39
3-1-3-میکروسکوپ نیروی اتمی(AFM) …………………………………………………………..42
3-2-نتایج آزمایش های جداسازی مایعات……………………………………………………………..45
3-2-1-آزمون تراوایی………………………………………………………………………………….45
بخش چهارم: نتیجه گیری و پیشنهادات…………………………………………………………………51
4-1-نتیجه گیری…………………………………………………………………………………………52
4-2-پیشنهادات…………………………………………………………………………………………..54
مراجع…………………………………………………………………………………………………….55
فهرست شکل ها
عنوان                                                                                                         صفحه
شکل 1-1-نمونه هایی از غشاهای سرامیکی…………………………………………………………….7
شکل 1-2-غشای فلزی…………………………………………………………………………………….8
شکل 1-3-نمونه ای از غشای مارپیچی…………………………………………………………………..9
شکل 1-4-فرایند جداسازی نانوفیلتراسیون……………………………………………………………..12
شکل 1-5- فرایند جداسازی اولترافیلتراسیون………………………………………………………….13
شکل 1-6-فرایند جداسازی میکروفیلتراسیون………………………………………………………….14
شکل 1-7-تقسیم بندی مواد………………………………………………………………………………15
شکل 1-8-فاز پیوسته و پراکنده در ساختار غشاهای بستر آمیخته……………………………………24
شکل 1-9- ساختار شیمیایی پلی سولفون……………………………………………………………….27
شکل 2-1- آون مورد استفاده به­منظور ساخت و خشک کردن غشا…………………………………..34
شکل 2-2- حمام آب و سیستم بازگشتی در ساخت غشا………………………………………………..34
شکل2-3- حمام اولتراسونیک مورد استفاده برای پخش کردن یکنواخت ذرات……………………..34
شکل2-4- مدول غشایی استفاده شده جهت اندازه ­گیری میزان تراوایی……………………………….35
شکل3-1- طیف FTIR پلی سولفون خالص…………………………………………………………..38
شکل3-2- طیف FTIR نانوسیلیکا………………………………………………………………………38
شکل3-3- طیف FTIR نانوکلی………………………………………………………………………..39
شکل3-4- تصویر FESEM از پلی سولفون آمیخته شده با 5/0% وزنی نانوکلی………………….40
شکل 3-5- تصویر FESEM از پلی سولفون آمیخته شده با 1% وزنی نانوکلی…………………..40
شکل 3-6- تصویر FESEM از پلی سولفون آمیخته شده با 2% وزنی نانوکلی……………………41
شکل 3-7- تصویر FESEM از پلی سولفون آمیخته شده با 5% وزنی نانو سیلیکا………………..41
شکل 3-8- تصویر FESEM از پلی سولفون آمیخته شده با10% وزنی نانو سیلیکا………………41
شکل 3-9- تصویر FESEM از پلی سولفون آمیخته شده با15% وزنی نانو سیلیکا……………….42
شکل 3-10- تصویر FESEM از پلی سولفون خالص……………………………………………….42
شکل 3-11- ریخت شناسی سطح غشای پلی سولفون خالص توسط AFM ………………………..43
شکل 3-12- ریخت شناسی سطح غشای نانوکامپوزیتی پلی سولفون با 5/0% وزنی نانوکلی توسط AFM .43
شکل 3-13- ریخت شناسی سطح غشای نانوکامپوزیتی پلی سولفون با 1% وزنی نانوکلی توسط AFM..43
شکل 3-14- ریخت شناسی سطح غشای نانوکامپوزیتی پلی سولفون با 2% وزنی نانوکلی توسط AFM…44
شکل3-15- ریخت شناسی سطح غشای نانوکامپوزیتی پلی سولفون با 5% وزنی نانو سیلیکا توسط AFM…………44
شکل 3-16- ریخت شناسی سطح غشای نانوکامپوزیتی پلی سولفون با 10% وزنی نانوسیلیکا توسط AFM .44
شکل 3-17- ریخت شناسی سطح غشای نانوکامپوزیتی پلی سولفون با 15% وزنی نانوسیلیکا توسط AFM .. 45
جدول3-1-اثر حضور نانو کلی و نانو سیلیکا بر تراوایی آب خالص در غشای نانو کامپوزیتی پلی سولفون … 46
شکل 3-18- نمودار مقایسه تراوایی بین پلی سولفون با غشای پلی سولفون-نانوسیلیکا با 5% وزنی……….46
شکل 3-19-نمودار مقایسه تراوایی بین پلی سولفون با غشای پلی سولفون-نانوسیلیکا با 10% وزنی ….47
شکل3-20- نمودار مقایسه تراوایی بین پلی سولفون با غشای پلی سولفون-نانوسیلیکا با 15% وزنی ….47
شکل3-21- نمودار مقایسه تراوایی بین پلی سولفون با غشای پلی سولفون-خاک رس با 5/0%وزنی……..48
شکل3-22- نمودار مقایسه تراوایی بین پلی سولفون با غشای پلی سولفون-خاک رس با 1% وزنی……….48
شکل 3-23- نمودار مقایسه تراوایی بین پلی سولفون با غشای پلی سولفون-خاک رس با 2% وزنی .49

چکیده

در حال حاضر غشاها جایگاه ویژه ای در صنایع جداسازی مختلف پیدا کرده اند و کاربردهای وسیعی در زمینه های گوناگون جداسازی اعم از محلول های مایع و گازهای مختلف دارا می­باشند. تکنولوژی غشا یکی از تکنولوژی های پرکاربرد در صنعت امروز است که حوزه کاربرد آن از صنعت آب و فاضلاب تا صنایع غذایی و دارویی گسترده است. بیشتر غشاهایی که اخیرا در فرایندهای جداسازی غشایی گازها مورد استفاده قرار می گیرند غشاهای پلیمری و غیر متخلخل هستند و پایه عملکرد آنها مکانیسم حلالیت – نفوذ است. این مکانیسم در مقیاس مولکولی تراوش مولکولها از غشاء پلیمر است. در این مکانیسم فرض می شود مولکول در یک طرف غشا جذب می شود و از میان فضاهای خالی زنجیرهای پلیمر نفوذ می کند و در سطح دیگر دفع می شود.پلیمر پلی سولفون به دلیل دارا بودن خواص خوب مکانیکی، مقاومت شیمیایی بالا و دمای تبدیل شیشه ای بالا ، به مقدار زیادی در تهیه غشاهای نامتقارن (معمولا در محدوده اولترافیلتراسیون و میکروفیلتراسیون) مورد استفاده قرار میگیرد.غشاهای اولترا فیلتراسیون پلی سولفونی، ترشوندگی سطحی بسیار پایینی دارند.به واسطه برهم­کنش­های هیدروفوبی بین غشا و حل شونده های آبگریز، این خاصیت در غشاهای پلی سولفونی مشکلات انسداد زیادی را در پی خواهد داشت.همچنین  غشاهای پلیمری نمی توانند به مشکل تناقض بین انتخابگری و تراوایی چیره شوند.به منظور افزایش آبدوستی غشاهای پلی سولفون و بهبود

موضوعات: بدون موضوع  لینک ثابت
 [ 11:05:00 ب.ظ ]




فهرست مطالب

عنوان                                                                                                                                 صفحه

خلاصه فارسی…………………………………………………………………………………………………………………………………………….1

   فصل اول: کلیات

1-1. نانو ……………………………………………………………………………………………………………………………………………………..4

1-1-1. علم نانو………………………………………………………………………………………………………………………………………….4

1-1-2. فناوری نانو…………………………………………………………………………………………………………………………………….4

1-2. مواد نانو ساختار…………………………………………………………………………………………………………………………………5

1-3. کاتالیزور……………………………………………………………………………………………………………………………………………..5

1-3-1. نقش کاتالیست‌های نانو ساختار در حذف آلاینده‌های زیست محیطی………………………………………..6

1-4. فرایند سل-ژل در سنتز نانو فوتوکاتالیست‌ها…………………………………………………………………………………….6

1-5. تجزیه فوتوکاتالیستی…………………………………………………………………………………………………………………………..7

1-6. نیمه هادی‌ها………………………………………………………………………………………………………………………………………..7

1-7. فوتوکاتالیست………………………………………………………………………………………………………………………………………9

1-8. تیتانیوم دی اکسید……………………………………………………………………………………………………………………………10

1-9. فوتوکاتالیزور TiO2 در مقیاس نانو……………………………………………………………………………………………………10

1-10. مکانیسم تخریب فوتوکاتالیستی تیتانیوم دی اکسید…………………………………………………………………….11

1-11. بهبود کارایی و واکنش پذیری تیتانیوم دی اکسید………………………………………………………………………..14

1-12. فوتوکاتالیز………………………………………………………………………………………………………………………………………..17

1-13. انواع کاتالیزورهای نیمه رسانا (فوتوکاتالیزور)…………………………………………………………………………………17

1-14. روش‌های مشخصه‌یابی نانوذرات……………………………………………………………………………………………………..18

1-14-1. آنالیز میكروسكوپ الكترونی………………………………………………………………………………………………………18

1-14-2. آنالیز ساختاری…………………………………………………………………………………………………………………………..20

1-14-3. آنالیز مورفولوژی…………………………………………………………………………………………………………………………21

1-15. تاریخچه پیدایش زئولیت‌ها…………………………………………………………………………………………………………….22

1-16. ساختمان زئولیت‌ها…………………………………………………………………………………………………………………………22

1-17. تخلخل زئولیت‌ها…………………………………………………………………………………………………………………………….24

1-18. ویژگی و موارد استفاده از زئولیت‌ها……………………………………………………………………………………………….24

1-19. خواص زئولیت‌ها……………………………………………………………………………………………………………………………..25

1-20. انواع زئولیت‌ها…………………………………………………………………………………………………………………………………25

1-20-1. زئولیت‌های طبیعی…………………………………………………………………………………………………………………….25

1-20-2. زئولیت‌های سنتزی…………………………………………………………………………………………………………………….26

1-21. پارامترهای مؤثر بر سنتز زئولیت……………………………………………………………………………………………………26

1-22. سنتز نانو بلورهای زئولیت……………………………………………………………………………………………………………….28

1-22-1. سنتز نانو بلورهای زئولیت با بهره گرفتن از ژل و محلول شفاف……………………………………………………..28

1-22-2. سنتز نانو بلورهای زئولیت در فضای بسته…………………………………………………………………………………29

1-23. راکتورهای شیمایی…………………………………………………………………………………………………………………………29

1-24. راکتورهای ناپیوسته (Batch)…………………………………………………………………………………………………………30

1-25. فوتوراکتور………………………………………………………………………………………………………………………………………..31

1-25-1. انواع راکتورهای فوتوکاتالیستی………………………………………………………………………………………………….31

1-25-2. راکتورهایTiO2 Slurry ……………………………………………………………………………………………………………32

1-25-3. راکتورهای فوتوکاتالیستی Immobilized با TiO2 تثبیت شده……………………………………………….33

1-26. مختصری در مورد گوگرد، خواص آن…………………………………………………………………………………………….33

1-27. مضرات گوگرد و دلایل حذف آن…………………………………………………………………………………………………..34

1-28. گوگرد در سوخت های گازوئیلی…………………………………………………………………………………………………….35

1-29. گوگرد در سوخت بنزین…………………………………………………………………………………………………………………35

1-30. اهمیت گوگردزدایی………………………………………………………………………………………………………………………..36

1-31. بررسی نقش واکنش‌های حرارتی و کاتالیستی در فرایند گوگردزدایی…………………………………………38

1-32. دلایل مطرح شدن روش‌های فوتوکاتالیستی اکسیداسیونی گوگردزدایی……………………………………..39

1-33. هدف از اجرای این تحقیق……………………………………………………………………………………………………………..40

    فصل دوم: مروری بر متون گذشته

2-1. مقدمه…………………………………………………………………………………………………………………………………………………42

2-2. اثر میزان گوگرد موجود در سوخت‌های مصرفی بر تشکیل ترکیبات آلاینده………………………………….43

2-3. قوانین جهانی برای میزان گوگرد مجاز سوخت‌های تولیدی پالایشگاه‌ها………………………………………..45

پایان نامه و مقاله

 

2-4. استانداردها و میزان گوگرد سوخت‌های تولیدی پالایشگاه‌های ایران……………………………………………..46

2-5. توزیع ترکیبات گوگردی در سوخت‌های تولیدی پالایشگاه‌ها…………………………………………………………46

2-6. روش‌های مختلف گوگردزدایی………………………………………………………………………………………………………….47

2-7. گوگردزدایی با بهره گرفتن از هیدرژن (HDS)………………………………………………………………………………………48

2-7-1. واکنش‌پذیری ترکیبات گوگردی در HDS………………………………………………………………………………….49

2-8. گوگردزدایی بدون استفاده از هیدرژن………………………………………………………………………………………………50

2-9. گوگردزدایی فوتوکاتالیستی………………………………………………………………………………………………………………50

    فصل سوم: مواد و روش‌ها

3-1. دستگاه‌ها و وسایل مورد استفاده در آزمایشگاه…………………………………………………………………………………59

3-2. مواد شیمیایی مورد استفاده در آزمایشگاه…………………………………………………………………………………………60

3-3. روش انجام آزمایشات………………………………………………………………………………………………………………………….62

3-3-1. نانو فوتوکاتالیست‌های مورد استفاده……………………………………………………………………………………………..62

3-3-2. آماده‌سازی پایه : سنتز نانوزئولیت فوجاسیت NaX……………………………………………………………………..64

3-3-3. روش‌های سنتز و مشخصه‌یابی نانوفوتوکاتالیست‌ها………………………………………………………………………65

3-4. تعیین Band-gap………………………………………………………………………………………………………………………………..99

3-5. فرایندهای فوتوکاتالیستی………………………………………………………………………………………………………………….100

3-6. خوراک مورد استفاده………………………………………………………………………………………………………………………….100

3-7. فوتوراکتور طراحی شده……………………………………………………………………………………………………………………..101

3-8. آنالیز خوراک و محصولات………………………………………………………………………………………………………………….103

3-9. کالیبراسیون دستگاه کروماتوگرافی گازی………………………………………………………………………………………….105

3-9-1. رسم منحنی کالیبراسیون……………………………………………………………………………………………………………..105

3-10. روش انجام تست‌های گوگردزدایی فوتوکاتالیستی………………………………………………………………………….108

3-11. مطالعه‌ی ایزوترمیک فرایند…………………………………………………………………………………………………………….109

3-12. مطالعه‌ی سینتیک فرایند……………………………………………………………………………………………………………….137

3-13. بررسی عملکرد فوتوکاتالیست Pcat(29) درگوگردزدایی نمونه‌ی واقعی……………………………………….140

   فصل چهارم: نتایج

4-1. سنتز و مشخصه‌یابی نانوزئولیت فوجاسیت NaX ……………………………………………………………………………..143

4-1-1. تأثیر پارامترهای مختلف در سنتز زئولیت NaX ………………………………………………………………………….143

4-1-2. تفسیر نتایج آنالیزهای مشخصه‌یابی نانوزئولیت فوجاسیت NaX…………………………………………………145

4-2. تفسیر و تجزیه، تحلیل نتایج آنالیزهای مشخصه‌یابی نانوفوتوکاتالیست‌ها……………………………………….148

4-2-1. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(1)……………………………………………………………..148

4-2-2. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(2)…………………………………………………………….149

4-2-3. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(3)…………………………………………………………….150

4-2-4. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(5)…………………………………………………………….152

4-2-5. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(12)………………………………………………………….153

4-2-6. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(14)………………………………………………………….154

4-2-7. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(16)………………………………………………………….155

4-2-8. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(19)………………………………………………………….157

4-2-9. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(23)………………………………………………………….159

4-2-10. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(24)……………………………………………………….161

4-2-11. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(25)………………………………………………………..162

4-2-12. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(26)………………………………………………………..163

4-2-13. تفسیر نتایج مشخصه‌یابی برای  فوتوکاتالیست Pcat(29)………………………………………………………..166

4-3. تفسیر نتایج حاصل از اندازه‌گیری Band-gap…………………………………………………………………………………172

4-4. درصد تبدیل…………………………………………………………………………………………………………………….173

4-5. بررسی تاثیر پارامترهای مؤثر در بازده فرایند گوگردزدایی اکسایشی فوتوکاتالیستی……………………173

4-6. تفسیر نتایج سایرآزمایشات فوتوراکتوری گوگردزدایی…………………………………………………………………….188

4-6-1. نتایج حاصل از آزمایشات گوگردزدایی با فوتوکاتالیست‌های گروه (الف)……………………………………188

4-6-2. نتایج حاصل از آزمایشات گوگردزدایی با فوتوکاتالیست‌های گروه (ج)………………………………………191

4-6-3. مقایسه‌ی میان کل فوتوکاتالیست‌های Loading در گوگردزدایی……………………………………………..193

4-6-4. نتایج حاصل از آزمایشات گوگردزدایی با فوتوکاتالیست‌های گروه (د)……………………………………….193

4-6-5. نتایج حاصل از آزمایشات گوگردزدایی با فوتوکاتالیست‌های گروه (ه)……………………………………….195

4-6-6. نتایج حاصل از آزمایشات گوگردزدایی با فوتوکاتالیست‌های گروه (ت)……………………………………..199

4-7. تعیین نوع فرایند به کار گرفته شده در این تحقیق جهت گوگردزدایی………………………………………..203

4-8. محاسبه‌ی ممان دوقطبی به روش تئوری شیمی کوانتومی……………………………………………………………204

4-9. آنالیز خوراک و محصولات……………………………………………………………………………………………………………….205

4-9-1. چگونگی تفسیر نتایج کمی به دست آمده از دستگاه GC-MS………………………………………………..205

4-9-2. چگونگی تفسیر نتایج کیفی حاصل از آنالیز GC-MS……………………………………………………………….206

4-10. مطالعات سینتیکی واکنش……………………………………………………………………………………………………………210

4-10-1. بررسی تطابق با مدل‌های سینتیکی………………………………………………………………………………………..214

4-11. تفسیر نتایج آزمایش‌های گوگردزدایی نمونه واقعی گازوئیل………………………………………………………214

   فصل پنجم: بحث و پیشنهادات

5-1. نتیجه‌گیری…………………………………………………………………………………………………………………………………….218

5-2. پیشنهادات………………………………………………………………………………………………………………………………………221

منابع……………………………………………………………………………………………………………………………………………………….222

خلاصه انگلیسی………………………………………………………………………………………………………………………………………233

ضمایم……………………………………………………………………………………………………………………………………………………..235

فهرست جداول

عنوان                                                                                                                                 صفحه

جدول 1-1. انرژی فاصلۀ نواری مورد نیاز برای برانگیختگی نیمه هادی‌ها…………………………………………….9

جدول 2-1. ساختار مولکولی ترکیبات گوگردی و مکانیسم گوگردزدایی آن‌ ها…………………………………….49

جدول 3-1. مشخصات اکسیدانت H2O2………………………………………………………………………………………………..60

جدول 3-2. مشخصات نانوفوتوکاتالیستTiO2 (P25)  مورد استفاده در آزمایش…………………………………61

جدول 3-3. لیست فوتوکاتالیست‌های سنتز شده جهت گوگردزدایی ترکیبات نفتی………………………………………63

جدول 3-4. نتایج آنالیز XRF برای فوتوکاتالیست‌های سنتز شده گروه (الف)……………………………………..68

جدول 3-5. نتایج آنالیز XRF برای فوتوکاتالیست‌های سنتز شده گروه (د)………………………………………..77

جدول 3-6. خواص فیزیکی- شیمیایی اجزای خوراک مورد استفاده……………………………………………………101

جدول 3-7. نتایج اندازه‌گیری گوگرد کل، با دستگاه Total Sulfur X-ray Analyzer………………………141

جدول 4-1. شرایط سنتز برای نمونه‌های مختلف نانوزئولیت NaX……………………………………………………..143

جدول 4-2. نتایج به دست آمده از آنالیز BET/BJH……………………………………………………………………………169

جدول 4-3. مقایسه‌ی نتایج حاصل از تغییر جرم كاتالیست در میزان راندمان……………………………………174

جدول 4-4. تاثیر درصدهای وزنی مختلف دوپه شده در میزان راندمان………………………………………………176

جدول 4-5. مقایسه نتایج حاصل از تغییر مقدار اكسیدانت كمكی در میزان راندمان…………………………178

جدول 4-6. مقایسه نتایج حاصل از تغییر مدت زمان تابش‌دهی در میزان راندمان…………………………….180

جدول 4-7. مقایسه نتایج حاصل از نوع تابش نور در میزان راندمان……………………………………………………182

جدول 4-8. مقایسه‌ی نتایج تغییر بازده با افزایش 10 برابری حجم خوراك اولیه………………………………184

جدول 4-9. مقایسه‌ی نتایج تغییر بازده با افزایش دو برابری حجم خوراك اولیه………………………………..185

جدول 4-10. لیست فوتوكاتالیست‌های سنتز شده با راندمان تخریب بالا……………………………………………187

جدول 4-11. مقایسه كارایی فوتوكاتالیست‌های گروه “الف” در گوگردزدایی……………………………………..189

جدول 4-12. ارتباط میان میزان TiO2(P25) بارگذاری شده با درصد كاهش DBT…………………………190

جدول 4-13. مقایسه كارایی فوتوكاتالیست‌های گروه “ج” در گوگردزدایی……………………………………….192

جدول 4-14. مقایسه كارایی فوتوكاتالیست‌های گروه “د” در گوگردزدایی………………………………………..194

جدول 4-15. ارتباط میان میزان TiO2(P25) دوپه شده با درصد كاهش DBT………………………………..195

جدول 4-16. مقایسه كارایی فوتوكاتالیست‌های بخش (ه- I) در گوگردزدایی……………………………………196

جدول 4-17. مقایسه كارایی فوتوكاتالیست‌های بخش (ه- II) در گوگردزدایی………………………………….198

جدول 4-18. مقایسه كارایی فوتوكاتالیست‌های گروه “ت” در گوگردزدایی……………………………………….199

جدول 4-19. راندمان گوگردزدایی در نتیجه‌ی فرایند جذب سطحی در زئولیت……………………………….203

جدول 4-20. نتایج آزمایش‌های سینتیكی با كاتالیست (  Ni(%8)/TiO2/zeolite NaX)………………..210

جدول 4-21. نتایج نمودارهای مربوط به معادلات سینتیكی……………………………………………………………….213

جدول 4-22. ثابت‌های مدل سینتیكی لاگرگرن…………………………………………………………………………………..213

جدول 4-23. ثابت‌های ‌مدل سینتیكی الوویچ………………………………………………………………………………………213

جدول 4-24. ثابت‌های مدل سینتیكی بلانچارد…………………………………………………………………………………..214

جدول 4-25. نتایج راندمان گوگردزدایی روی نمونه واقعی گازوئیل……………………………………………………215

فهرست نمودارها

عنوان                                                                                                                                 صفحه

نمودار 4-1. حلقه هیسترسیس تجربی………………………………………………………………………………………………….170

نمودار 4-2. نمودار حجم حفره بر حسب قطر حفره……………………………………………………………………………..171

نمودار 4-3. منحنی روند تغییر بازده با تغییر مقدار جرم كاتالیست…………………………………………………….174

نمودار 4-4. روند تغییر بازده با تغییر میزان دوپانت……………………………………………………………………………..176

نمودار 4-5. مقایسه‌ی میزان راندمان در نتیجه‌ی مقادیر متفاوت دوپانت……………………………………………177

نمودار 4-6. منحنی روند تغییر بازده با تغییر مقدار اکسیدانت H2O2………………………………………………….178

نمودار 4-7. مقایسه‌ی میزان راندمان در نتیجه‌ی تغییر مقدار اکسیدانت H2O2…………………………………178

نمودار 4-8. مقایسه‌ی میزان راندمان در نتیجه تغییر مدت زمان تابش‌دهی……………………………………….180

نمودار 4-9. مقایسه‌ی میزان راندمان در نتیجه تغییر نوع تابش نور…………………………………………………….182

نمودار 4-10. مقایسه‌ی میزان راندمان در نتیجه افزایش حجم خوراك اولیه………………………………………184

نمودار 4-11. مقایسه‌ی‌ میزان راندمان بین فوتوكاتالیست‌های گروه (الف)………………………………………….189

نمودار 4-12. روند تغییر بازده با تغییر میزان TiO2(P25) در فوتوکاتالیست‌های (الف)……………………..191

نمودار 4-13. مقایسه میزان راندمان بین فوتوكاتالیست‌های گروه (ج)………………………………………………..192

نمودار 4-14. مقایسه میزان راندمان بین كل فوتوكاتالیست‌های Loading………………………………………..193

نمودار 4-15. مقایسه میزان راندمان بین فوتوكاتالیست‌های گروه (د)…………………………………………………194

نمودار 4-16. روند تغییر بازده با تغییر میزان TiO2(P25) در فوتوکاتالیست‌های (د)…………………………195

نمودار 4-17. مقایسه میزان راندمان بین فوتوكاتالیست‌های گروه “ه”………………………………………………..199

نمودار 4-18. مقایسه میزان راندمان بین فوتوكاتالیست‌های گروه (ت)………………………………………………200

نمودار 4-19. مقایسه میزان راندمان با کاتالیست‌های  Dopping دو و سه جزئی………………………………201

نمودار 4-20. مقایسه میزان راندمان گوگردزدایی اكسایشی، میان كل فوتوكاتالیست‌‌ها……………………..202

نمودار 4-21. نمودار نتایج qt بر حسب t……………………………………………………………………………………………….211

نمودار 4-22. نمودار نتایج مدل سینتیکی لاگرگرن (سینتیک شبه مرتبه‌ی اول)………………………………211

نمودار 4-23. نمودار نتایج مدل سینتیکی الوویچ (سینتیک شبه مرتبه‌ی اول)………………………………….212

نمودار 4-24. نمودار نتایج مدل سینتیکی بلانچارد (سینتیک شبه مرتبه‌ی‌ دوم)……………………………212

فهرست اشکال

عنوان                                                                                                                                 صفحه

شکل 1-1. مقایسه انرژی فعالسازی همراه/بدون كاتالیزور………………………………………………………………………6

شکل 1-2. ساختار نیمه رسانا………………………………………………………………………………………………………………….8
شکل 1-3. افزایش شکاف انرژی در راستای کاهش تعداد ذرات…………………………………………………………….11

شکل 1-4. شماتیک فرایند فوتوکاتالیستی……………………………………………………………………………………………..13

شکل 1-5. تراز انرژی فلز………………………………………………………………………………………………………………………….16

شکل 1-6. توزیع اندازه حفره‌‌ها در جاذب‌های مختلف……………………………………………………………………………22

شکل 1-7. شماتیک دستگاه آزمایشگاهی برای واکنش‌های هیدروکراکینگ کاتالیستی……………………….39

شکل 2-1. اثر میزان گوگرد در سوخت دیزل روی ذرات معلق خروجی موتورهای دیزلی…………………….43

شکل 2-2. اثر میزان گوگرد بر تبدیل اکسیدهای نیتروژن……………………………………………………………………..44

شکل 2-3. توزیع ترکیبات گوگردی در سوخت‌های مورد استفاده در صنایع حمل و نقل…………………….47

شکل 2-4. فرایندهای متفاوت گوگردزدایی……………………………………………………………………………………………47

شکل 2-5. شمایی از فرایند HDS………………………………………………………………………………………………………….48

شکل 2-6. انواع ترکیبات گوگردی و سرعت واکنش HDS آن‌ ها را برحسب نقطه جوش…………………….50

شکل 3-1. تصویر SEM نمونه TiO2 (P25)…………………………………………………………………………………………..61

شکل 3-2. تصویر TEM نمونه TiO2 (P25)…………………………………………………………………………………………..61

شکل 3-3. دیفراکتوگرام XRD نانوزئولیت فوجاسیت NaX با درجه کریستالیته‌ی بالا………………………..64

شکل 3-4. تصویر SEM نانوزئولیت NaX……………………………………………………………………………………………..65

شکل 3-5. تصویر TEM نانوزئولیت NaX……………………………………………………………………………………………..65

شکل 3-6. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(1)…………………………………………………………………69

شکل 3-7. آنالیز XRF برای فوتوکاتالیست Pcat(1)………………………………………………………………………………69

شکل 3-8. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(2)…………………………………………………………………70

شکل 3-9. آنالیز XRF برای فوتوکاتالیست Pcat(2)………………………………………………………………………………70

شکل 3-10. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(3)………………………………………………………………71

شکل 3-11. آنالیز XRF برای فوتوکاتالیست Pcat(3)……………………………………………………………………………71

شکل 3-12. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(5)………………………………………………………………72

شکل 3-13. تصاویر مربوط به فوتوکاتالیست‌های بخش (3-3-3-الف)………………………………………………….73

شکل 3-14. تصاویر مربوط به فوتوکاتالیست‌های بخش (3-3-3-ب)……………………………………………………74

شکل 3-15. تصاویر مربوط به فوتوکاتالیست‌های بخش (3-3-3-ج)…………………………………………………….76

شکل 3-16. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(12)……………………………………………………………78

شکل 3-17. آنالیز XRF برای فوتوکاتالیست Pcat(12)…………………………………………………………………………78

شکل 3-18. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(14)……………………………………………………………79

شکل 3-19. تصاویر مربوط به فوتوکاتالیست‌های بخش (3-3-3-د)…………………………………………………….80

شکل 3-20. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(16)……………………………………………………………82

شکل 3-21. تصویر SEM برای فوتوکاتالیست Pcat(16)……………………………………………………………………….82

شکل 3-22. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(19)……………………………………………………………84

شکل 3-23. تصویر SEM برای فوتوکاتالیست Pcat(19)………………………………………………………………………84

شکل 3-24. تصاویر مربوط به فوتوکاتالیست‌های بخش (I) (3-3-3-ه)……………………………………………….86

شکل 3-25 . دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(23)…………………………………………………………..88

شکل 3-26. تصویر SEM برای فوتوکاتالیست Pcat(23)……………………………………………………………………….88

شکل 3-27. تصاویر مربوط به فوتوکاتالیست‌های بخش (II) (3-3-3-ه)………………………………………………89

شکل 3-28. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(24)……………………………………………………………90

شکل 3-29. تصویر مربوط به فوتوکاتالیست بخش (III) (3-3-3-ه)……………………………………………………90

شکل 3-30. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(25)……………………………………………………………91

شکل 3-31. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(26)……………………………………………………………92

شکل 3-32. تصویر SEM برای فوتوکاتالیست Pcat(26)………………………………………………………………………93

شکل 3-33. تصویر مربوط به فوتوکاتالیست‌های بخش (IV) (3-3-3-ه)…………………………………………….93

شکل 3-34. تصویر مربوط به فوتوکاتالیست‌های بخش (3-3-3-ت)…………………………………………………….96

شکل 3-35. دیفراکتوگرام XRD برای فوتوکاتالیست Pcat(29)……………………………………………………………97

شکل 3-36. نتایج FESEM برای فوتوکاتالیست Pcat(29) پس از کلسیناسیون………………………………….97

شکل 3-37. نتایج EDXA برای فوتوکاتالیست Pcat(29)……………………………………………………………………..98

شکل 3-38. نتایج BET/BJH  برای فوتوکاتالیست Pcat(29)………………………………………………………………98

شکل 3-39. طیف جذبی نانوذرات TiO2 و Pcat (29) دیسپرس شده در رزین اپوکسی………………………100

شکل 3-40. نماهایی از راکتور فوتوشیمیایی طراحی شده جهت فرایند گوگردزدایی…………………………..101

شکل 3-41. شمایی از دستگاه GC-MS………………………………………………………………………………………………..105

شکل 3-42. کروماتوگرام GC-MS مربوط به نمونه استاندارد (ppm) 10……………………………………………106

شکل 3-43. کروماتوگرام GC-MS مربوط به نمونه استاندارد (ppm) 50……………………………………………106

شکل 3-44. کروماتوگرام GC-MS مربوط به نمونه استاندارد (ppm) 100…………………………………………107

شکل 3-45. کروماتوگرام GC-MS مربوط به نمونه استاندارد (ppm) 200…………………………………………107

شکل 3-46. منحنی کالیبراسیون دستگاه  GC-MS……………………………………………………………………………..108

شکل 3-47. کروماتوگرام GC-MS مربوط به آزمایش (4-الف)…………………………………………………………….110

شکل 3-48. کروماتوگرام GC-MS مربوط به آزمایش (11-ب)……………………………………………………………112

شکل 3-49. کروماتوگرام GC-MS مربوط به آزمایش (15-ج)…………………………………………………………….114

شکل 3-50. کروماتوگرام GC-MS مربوط به آزمایش (18-د)……………………………………………………………..115

شکل 3-51. کروماتوگرام GC-MS مربوط به آزمایش (23-د)……………………………………………………………..117

شکل 3-52. کروماتوگرام GC-MS مربوط به آزمایش (26-د)……………………………………………………………..118

شکل 3-53. کروماتوگرام GC-MS مربوط به آزمایش (38-د)……………………………………………………………..122

شکل 3-54. کروماتوگرام GC-MS مربوط به آزمایش (40-د)……………………………………………………………..123

شکل 3-55. کروماتوگرام GC-MS مربوط به آزمایش (42-د)……………………………………………………………..124

شکل 3-56. کروماتوگرام GC-MS مربوط به آزمایش (48-ه)………………………………………………………………126

شکل 3-57. کروماتوگرام GC-MS مربوط به آزمایش (51-ه)……………………………………………………………..127

شکل 3-58. کروماتوگرام GC-MS مربوط به آزمایش (53-ه)……………………………………………………………..128

شکل 3-59. کروماتوگرام GC-MS مربوط به آزمایش (54-ه)……………………………………………………………..129

شکل 3-60. کروماتوگرام GC-MS مربوط به آزمایش (55-ه)……………………………………………………………..130

شکل 3-61. کروماتوگرام GC-MS مربوط به آزمایش (57-ه)………………………………………………………………131

شکل 3-62. کروماتوگرام GC-MS مربوط به آزمایش (61-ه)………………………………………………………………132

موضوعات: بدون موضوع  لینک ثابت
 [ 11:05:00 ب.ظ ]




فهرست مطالب

     عنوان                                                                                                                               صفحه

فصل اول: مقدمه …………………………………………………………………………………………………………………… 1

1-1-مقدمه ………………………………………………………………………………………………………………………… 2

1-2- شناخت بازار ………………………………………………………………………………………………………………… 4

1-3- ترکیب بازار …………………………………………………………………………………………………………………. 8

1-4- تقاضا …………………………………………………………………………………………………………………………. 9

1-5- آنالیز بازار  ……………………………………………………………………………………………………………………. 11

فصل دوم: توسعه استراتژی های بازاریابی   ……………………………………………………………………………….. 13

2-1- مقدمه  …………………………………………………………………………………………………………………………. 14

2-2- اجرا ……………………………………………………………………………………………………………………………. 15

2-3- دو اصل یاری دهنده در بازاریابی برای مهندسان  ………………………………………………………………. 18

2-4- اصول بازاریابی بیزینس به بیزینس     ………………………………………………………………………………….. 20

2-4-1- تعریف    ……………………………………………………………………………………………………………………. 20

2-4-2- متفاوت سازی از سایر زمینه های بازاریابی   …………………………………………………………………. 22

2-4-2-1- ماهیت محصولات    ……………………………………………………………………………………………….. 24

2-4-2-2- ماهیت مشتریان  ……………………………………………………………………………………………………. 30

2-4-2-3- کانال های مبادله  ………………………………………………………………………………………………….. 32

2-4-2-4- ارتباط   …………………………………………………………………………………………………………………. 38

2-4-2-5- سیاست قیمت    ………………………………………………………………………………………………………. 42

2-4-3- رفتار خرید  ………………………………………………………………………………………………………………. 49

2-4-4- دلایل خرید  ……………………………………………………………………………………………………………… 50

2-4-5- فرایند خرید  ……………………………………………………………………………………………………………… 51

2-4-6- جنبه های روان شناختی   ……………………………………………………………………………………………… 53

فصل سوم : ساختار بازار بین المللی صنایع شیمیایی   ………………………………………………………………….. 55

3-1- مقدمه  ………………………………………………………………………………………………………………………….. 56

3-2- ویژگی های اساسی از شاخه های کلیدی   ………………………………………………………………………… 57

3-2-2- صنعت داروسازی   …………………………………………………………………………………………………….. 60

3-2-3- بیو تکنولوژی و صنایع تکنولوژی ژن  …………………………………………………………………………. 63

3-2-4- صنعت کالا  ………………………………………………………………………………………………………………. 64

3-2-5- صنعت متخصصان شیمیایی   ……………………………………………………………………………………….. 65

3-2-6- صنعت مهندسی   ……………………………………………………………………………………………………….. 66

………………………………………………. 67

3-4- کانال های توزیع   …………………………………………………………………………………………………………… 68

3-5- محیط اقتصادی، سیاسی و اجتماعی   ………………………………………………………………………………… 69

3-5-1- وابستگی به بازار های نفت و گاز  ………………………………………………………………………………. 69

3-5-2- محدودیت های قانونی و سیاست گذاری   …………………………………………………………………….. 74

3-5-3- چانه زنی و گره های ذینفع   ………………………………………………………………………………………… 76

3-5-4- مشکلات تصویر سازی و پذیرش اجتماعی   …………………………………………………………………. 78

فصل چهار :بازاریابی پروژه های مهندسی مواد شیمیایی   ……………………………………………………………… 81

4-1- مقدمه  …………………………………………………………………………………………………………………………. 82

4-2- بازاریابی کارخانه های شیمیایی   …………………………………………………………………………………….. 82

4-3- بازاریابی تکنولوژی سبز  ………………………………………………………………………………………………… 91

4-4- بازاریابی کالاهای شیمیایی   …………………………………………………………………………………………….. 95

4-4-1- گازها ………………………………………………………………………………………………………………………. 96

4-4-2- نفت    ……………………………………………………………………………………………………………………….. 98

4-4-3- پالپ و کاغذ  …………………………………………………………………………………………………………….. 101

4-4-4- فیبرها ……………………………………………………………………………………………………………………… 107

4-4-5- کود های شیمیایی   ……………………………………………………………………………………………………. 108

4-4-6- کلرین   …………………………………………………………………………………………………………………….. 109

4-5- پلاستیک ها و لاستیک ها ………………………………………………………………………………………………. 112

4-5-1- پلی الفین ها ………………………………………………………………………………………………………………. 114

4-5-2- پلی استایرن ها ………………………………………………………………………………………………………… 119

4-5-3- پلی وینیل کلراید  ………………………………………………………………………………………………………. 120

4-5-4- پلی استر های اشباع نشده ………………………………………………………………………………………….. 122

4-5-5- فوم های پلی یورتان  …………………………………………………………………………………………………. 124

4-5-6- رزین های ترفتالات پلی اتیلن   …………………………………………………………………………………… 125

4-5-7- فیلم های ترفتالات پلی اتیلن   ……………………………………………………………………………………… 127

4-5-8- فیبر های ترفتالات پلی اتیلن   ……………………………………………………………………………………… 127

4-5-9- لاستیک ها ……………………………………………………………………………………………………………….. 128

4-5-10- لاستیک های طبیعی   ………………………………………………………………………………………………… 129

4-5-11- لاستیک های ترکیبی   ……………………………………………………………………………………………….. 130

4-5-12- الاستومر های ترموپلاستیک مبتنی بر استایرن  …………………………………………………………….. 132

فصل پنجم : نتیجه گیری   ………………………………………………………………………………………………………… 133

…………………………………………………………………………………………………………………………. 134

5-2- پوشش ها و جلا دهنده ها …………………………………………………………………………………………….. 137

5-3- رنگ های نساجی ……………………………………………………………………………………………………….. 138

5-4- بازدارنده های فرسایش     ………………………………………………………………………………………………… 139

5-5- مواد شیمیایی برای الکترونیک ها …………………………………………………………………………………… 141

5-6- کاتالیست ها ………………………………………………………………………………………………………………… 143

5-7- افزودنی های پلاستیک    …………………………………………………………………………………………………. 145

5-8- آفت کش ها ………………………………………………………………………………………………………………… 148

5-9- پلیمر های ویژه …………………………………………………………………………………………………………… 150

5-10- مواد آرایشی   ………………………………………………………………………………………………………………. 153

…………………………………………………………….. 157

5-12- روند های کلی   ………………………………………………………………………………………………………….. 158

5-13- آفت کش ها، قارچ کش ها و حشره کش ها ………………………………………………………………….. 159

5-14- دانه های تغییر یافته ژنتیک    ………………………………………………………………………………………….. 162

5-15- گیاهان به عنوان راکتو های شیمیایی   …………………………………………………………………………….. 166

5-16- غذای کامل   ……………………………………………………………………………………………………………….. 167

5-17- جنبه های قانونی   ………………………………………………………………………………………………………… 168

5-18- بازاریابی داروها ………………………………………………………………………………………………………….. 170

5-19- عوامل اجتماعی و دموگرافیک(مردم شناسی)  …………………………………………………………………. 172

پایان نامه

 

5-20- تغییر نمودار بازاریابی   ………………………………………………………………………………………………….. 176

5-21- بخش های بازار جدید  ………………………………………………………………………………………………… 176

5-22- رقبای جدید  ………………………………………………………………………………………………………………. 178

5-23- توسعه یک داروی جدید  ……………………………………………………………………………………………… 178

5-24- پیش بازاریابی   …………………………………………………………………………………………………………….. 180

5-25- راه اندازی مجدد داروها …………………………………………………………………………………………….. 181

5-26- کانال های توزیع   ………………………………………………………………………………………………………… 182

5-27- تجارت الکترونیک در صنعت شیمیایی   …………………………………………………………………………. 184

5-27-1- اهمیت تجارت الکترونیک در بازاریابی   …………………………………………………………………….. 184

5-27-2- مکان های بازار مواد شیمیایی مجازی ……………………………………………………………………… 185

5-28- بازار های نمایان شده ………………………………………………………………………………………………….. 187

5-28-1- dorado-نفت باکو  ……………………………………………………………………………………………….. 187

5-28-2- بیزینس در چین   ……………………………………………………………………………………………………… 190

5-29- بازبینی   ……………………………………………………………………………………………………………………… 191

فهرست جدول ها

عنوان                                                                                                         صفحه

فصل دوم                           

جدول1   ………………………………………………………………………………………………………………………………. 34

جدول2   ………………………………………………………………………………………………………………………………. 35

جدول3   ………………………………………………………………………………………………………………………………. 36

جدول4   ………………………………………………………………………………………………………………………………. 49

     فصل سوم 

جدول1   ………………………………………………………………………………………………………………………………. 66

فصل چهارم

جدول1   ………………………………………………………………………………………………………………………………. 120

   فصل پنجم

جدول1   ………………………………………………………………………………………………………………………………. 134

جدول2   ………………………………………………………………………………………………………………………………. 136

جدول3   ………………………………………………………………………………………………………………………………. 141

جدول4   ………………………………………………………………………………………………………………………………. 143

جدول5   ………………………………………………………………………………………………………………………………. 144

جدول6   ………………………………………………………………………………………………………………………………. 146

جدول7   ………………………………………………………………………………………………………………………………. 150

جدول8   ………………………………………………………………………………………………………………………………. 154

جدول9  ………………………………………………………………………………………………………………………………. 157

جدول10   ………………………………………………………………………………………………………………………………. 164

جدول11   ………………………………………………………………………………………………………………………………. 165

جدول12   ………………………………………………………………………………………………………………………………. 175

جدول13   ………………………………………………………………………………………………………………………………. 181

جدول14   ………………………………………………………………………………………………………………………………. 189  

فهرست شکل ها

   عنوان                                                                                                       صفحه

فصل  اول

شکل1   ………………………………………………………………………………………………………………………………. 4

شکل2   ………………………………………………………………………………………………………………………………. 5

شکل3   ………………………………………………………………………………………………………………………………. 5

شکل4   ………………………………………………………………………………………………………………………………. 6

شکل5   ………………………………………………………………………………………………………………………………. 9

شکل6   ………………………………………………………………………………………………………………………………. 9

شکل7   ………………………………………………………………………………………………………………………………. 10

شکل8 ………………………………………………………………………………………………………………………………. 12

فصل دوم

شکل1   ………………………………………………………………………………………………………………………………. 18

شکل2   ………………………………………………………………………………………………………………………………. 20

شکل3   ………………………………………………………………………………………………………………………………. 22

شکل4   ………………………………………………………………………………………………………………………………. 29

شکل5   ………………………………………………………………………………………………………………………………. 37

شکل6   ………………………………………………………………………………………………………………………………. 38

شکل7   ………………………………………………………………………………………………………………………………. 42

شکل8   ………………………………………………………………………………………………………………………………. 48

شکل9  ………………………………………………………………………………………………………………………………. 48

شکل10   ………………………………………………………………………………………………………………………………. 52

فصل سوم

شکل1   ………………………………………………………………………………………………………………………………. 58

شکل2   ………………………………………………………………………………………………………………………………. 62

شکل3   ………………………………………………………………………………………………………………………………. 62

شکل4   ………………………………………………………………………………………………………………………………. 71

شکل5   ………………………………………………………………………………………………………………………………. 71

شکل6   ………………………………………………………………………………………………………………………………. 72

شکل7   ………………………………………………………………………………………………………………………………. 73

شکل8   ………………………………………………………………………………………………………………………………. 80

فصل چهارم

شکل1   ………………………………………………………………………………………………………………………………. 84

شکل2   ………………………………………………………………………………………………………………………………. 87

شکل3   ………………………………………………………………………………………………………………………………. 87

شکل4  ………………………………………………………………………………………………………………………………. 90

شکل5  ………………………………………………………………………………………………………………………………. 92

شکل6   ………………………………………………………………………………………………………………………………. 92

شکل7   ………………………………………………………………………………………………………………………………. 97

شکل8   ………………………………………………………………………………………………………………………………. 99

شکل9   ………………………………………………………………………………………………………………………………. 19

شکل10   ………………………………………………………………………………………………………………………………. 101

شکل11   ………………………………………………………………………………………………………………………………. 102

شکل12   ………………………………………………………………………………………………………………………………. 102

شکل13   ………………………………………………………………………………………………………………………………. 103

 شکل14   ………………………………………………………………………………………………………………………………. 104

شکل15   ………………………………………………………………………………………………………………………………. 106

شکل16   ………………………………………………………………………………………………………………………………. 106

شکل17   ………………………………………………………………………………………………………………………………. 110

شکل18   ………………………………………………………………………………………………………………………………. 115

شکل19  ………………………………………………………………………………………………………………………………. 116

شکل20   ………………………………………………………………………………………………………………………………. 118

شکل21   ………………………………………………………………………………………………………………………………. 121

شکل22   ………………………………………………………………………………………………………………………………. 125

شکل23   ………………………………………………………………………………………………………………………………. 130

شکل24   ………………………………………………………………………………………………………………………………. 131

فصل پنجم

شکل1   ………………………………………………………………………………………………………………………………. 134

شکل2   ………………………………………………………………………………………………………………………………. 155

شکل3   ………………………………………………………………………………………………………………………………. 159

شکل4   ………………………………………………………………………………………………………………………………. 161

شکل5   ………………………………………………………………………………………………………………………………. 161

شکل6   ………………………………………………………………………………………………………………………………. 163

شکل7   ………………………………………………………………………………………………………………………………. 171

شکل8   ………………………………………………………………………………………………………………………………. 171

شکل9   ………………………………………………………………………………………………………………………………. 173

شکل10   ………………………………………………………………………………………………………………………………. 173

شکل11   ………………………………………………………………………………………………………………………………. 174

شکل12   ………………………………………………………………………………………………………………………………. 182

شکل13   ………………………………………………………………………………………………………………………………. 183

 

چکیده :

در این پایان نامه نقش تکنیک ها و روش های کارآمد بازاریابی و فروش در صنعت شیمی مورد بحث و بررسی قرار گرفته شده است. در واقع وظیفه ی اصلی بازاریابی که همان پیدا کردن بازار است و ترکیب منطقی از 4 عمل جذب کردن و جلب توجه مشتری، جذاب کردن محصول، برآورد کردن تقاضا و تخمین زدن تقاضاها، ترغیب مشتری برای خرید و پرداخت پول مورد مطالعه قرار گرفته سهم هر یک ارزیابی شده است. در این میان بر نقش توسعه استراتژی های بازاریابی، بازاریابی فناوری سبز و پیش بازاریابی ها به عنوان عوامل مهم تاثیر گذار به صورت موردی تاکید شده است. و در پایان هم فرایند های ارتباطاتی به عنوان بستر ساز بازاریابی کارآمد در صنعت شیمی مشخص گردیده است.

فصل اول

 

مقدمه

 

1-1- مقدمه

مسلما برای دانشمندان گاهی اوقات به نظر می رسد آشنا شدن با بازاریابی کاری بسیار مشکل باشد.از اینرو در آغاز این پایان نامه یک سری اسباب کار اصلی و لغاتی که دایر بر رسیدن سریعتر به این زمینه را باشد آورده ایم.

دانشمندان معمولا مشکلات مخصوصی با بازاریابی دارند زیرا اغلب آنها به محصولاتشان عشق وعلاقه دارند و نمی فهمند که دیگران خیلی در مورد علاقه آنها مشتاق نیستند .البته این مشکل مشتری است که در نگاه اول ارزش یک محصول را نمی فهمند ولی به هرحال وقت تلف کردن است که سعی کنیم مردم را متقاعد کنیم وقتی خیلی از مسائل پرت هستند.ممکن است خیلی وقت ها حق با دانشمند باشد اگر چه ممکن است یک محصولی اختراع شده باشد و سالها دریک کشو مانده باشد و بعد از سالها آن محصول مورد علاقه و استفاده ویا برای حل یک مسئله مورد استفاده باشد]1[.

پس جای امیدواری است که شاید چیزی را که می سازند بعدا مورد استفاده قرار گیرد.گاهی اوقات دانشمندان خیلی به محصول خود مطمئن هستند که بدون در نظر گرفتن علایق مردم به صورت مخفیانه کار می کنند.مانند پلی کربنات که برای دیسک های فشرده به کار میرود هم همینطور بدست آمده است.آقای گور که کارمند قبلی دوپوند بوده است یک فیلم نازک از پلی تترا پلی اتیلن قطع شده را فاسد کرده بعد از آن یک تعداد حفره های خیلی ریزی روی آن ایجاد شدبعد گور یک کاربردی برای این مواد فاسد شده پیشنهاد کرد در واقع برای پیشرفت یک نوع جدیدی از مواد نیمه تراوا برای کمپانی استفاده کرد گور محصولات خود را به دوپوند ارائه کرد .کمپانی دوپوند قبلا درتولید محصولات جدید مثل تفلون و کبلار (نوعی الیاف مخصوص لباس های ضد گلوله) موفق بوده است اما این بار استقبالی از ماده گور نمیکند پس گور کمپانی خود را تاسیس کرد که الان در دنیا بسیار مشهور است. وی محصولات خود را در صنعت نساجی با عنوان گورتکس با پایه ی فلوئورکربن را ارائه می کند]2[.

دانشمندان در زمینه ی کار خود هنرمندند و اهمیتی نمی دهند که نتیجه ی کار خودشان چه می شود به امید روزیکه اهمیت علم ودانش در جهان بالا رود و کمیته نوبل به خاطر همه سختی هایی که کشیده اند به آنها پاداش دهد پس همیشه دلگرمند.

به هر حال جدای از تحقیقات اساسی( که قطعا و بدون شک خیلی ضروری و مهم است ) پیشرفت و اختراع بی فایده اند وقتی نتوانند بازاریابی کنند و محصولات را به فروش برسانند پس باید محصولات را در موزه نگه دارندو تحقیقات اساسی زمانی مهم است وقتی بتوانیم محصول را به فروش برسانیم تا منفعت و پولی را برگرداند تا کمک خرج دوباره تولید و تحقیقات باشد.

موضوعات: بدون موضوع  لینک ثابت
 [ 11:04:00 ب.ظ ]




فهرست مطالب

عنوان                                                                                                                 صفحه

چکیده   …………………………………………………………………………………………………………………………………………………….  ل

فصل اول : گونه شناسی جیوه و کاربرد آن در صنعت و ایجاد بیماری……………………………………………………………… 1

1-1-تعریف گونه شناسی………………………………………………………………………………………………………………………………. 2

1-1-2- تعریف گونه شناسی عنصری و جز به جز کردن ………………………………………………………………………………… 3

1-2- مشکلاتی که بر سر راه گونه شناسی وجود دارد……………………………………………………………………………………… 4

1-3- استراتژی گونه شناسی………………………………………………………………………………………………………………………….. 5

1-4- جیوه و اهمیت اندازه گیری آن …………………………………………………………………………………………………………….. 6

1-5- تاریخچه جیوه……………………………………………………………………………………………………………………………………… 7

1-6- خواص جیوه……………………………………………………………………………………………………………………………………….. 7

1-6-1- خواص ترکیبات جیوه……………………………………………………………………………………………………………………… 8

1-7- گسترش کاربردهای جیوه……………………………………………………………………………………………………………………… 10

1-7-1- پراکندگی جیوه در محیط زیست……………………………………………………………………………………………………….. 10

1-8- بیماری های ناشی از قرار گیری در معرض جیوه……………………………………………………………………………………. 11

1-9- تاثیر جیوه بر سلامتی……………………………………………………………………………………………………………………………. 12

1-10- جیوه در مواد غذایی…………………………………………………………………………………………………………………………… 13

1-11- اثر جیوه بر حیوانات………………………………………………………………………………………………………………………….. 14

1-12- اثرات فیزیولوژیکی جیوه……………………………………………………………………………………………………………………. 15

1-13- موارد کاربرد صنعتی و غیر صنعتی جیوه……………………………………………………………………………………………… 16

1-14- آماده سازی جیوه (مراحل گونه شناسی جیوه)……………………………………………………………………………………… 17

1-14-1- جدا سازی ترکیبات جیوه (مراجل گونه شناسی جیوه)……………………………………………………………………… 17

1-14-1-1- نمونه های خاک و رسوب………………………………………………………………………………………………………….. 18

1-14-1-2- نمونه های بیولوژیکی………………………………………………………………………………………………………………… 19

1-15- مشکلات اصلی در گونه شناسی جیوه………………………………………………………………………………………………….. 19

1-16- مروری بر تحقیقات گذشته در زمینه گونه شناسی جیوه…………………………………………………………………………. 20

فصل دوم :ریز استخراج فاز جامد با بهره گرفتن از جاذب پلیمری قالب مولکولی   ……………………………………………….. 22

مقدمه   …………………………………………………………………………………………………………………………………………………………. 23

2-1   استخراج ……………………………………………………………………………………………………………………………………………. 23

2-1-1 خصوصیات حلال    …………………………………………………………………………………………………………………………. 24

2-2 استخراج با حلال    ………………………………………………………………………………………………………………………………. 25

2-3 استخراج با فاز جامد(SPE)    ………………………………………………………………………………………………………………. 25

2-4 ریز استخراج با فاز جامد(SPME)    …………………………………………………………………………………………………….. 26

2-4-1 مزایای میکرو استخراج با فاز جامد …………………………………………………………………………………………………….. 27

2-4-2 پارامترهای بهینه سازی کردن میکرو استخراج با فاز جامد    …………………………………………………………………. 28

2-4-3 عوامل موثر بر مقدار ماده ی جذب شده    ………………………………………………………………………………………….. 29

2-4-4 انواع روش های نمونه برداری    ………………………………………………………………………………………………………… 29

2-4-5 انتخاب روش استخراج    ………………………………………………………………………………………………………………….. 30

2-4-6 معایب میکرو استخراج با فاز جامد   …………………………………………………………………………………………………… 30

2-4-7 انواع فایبرها    ………………………………………………………………………………………………………………………………….. 30

2-4-8 انواع روش های هم زدن در میکرو استخراج با فاز جامد    ………………………………………………………………….. 32

2-4-9 عوامل موثر بر میکرو استخراج با فاز جامد     …………………………………………………………………………………….. 33

2-4-10 کاربردهای میکرو استخراج با فاز جامد     ……………………………………………………………………………………….. 33

2-5 سرنگ SPME      ………………………………………………………………………………………………………………………………. 34

2-6 مروری بر تحقیقات گذشته SPME     …………………………………………………………………………………………………… 35

2-7 انواع فازهای جامد    …………………………………………………………………………………………………………………………….. 38

2-7-1 کربن(گرافیت)    ……………………………………………………………………………………………………………………………… 38

2-7-2 سیلیکاژل    ……………………………………………………………………………………………………………………………………… 38

2-7-3 جاذب پلیمری   

پایان نامه و مقاله

 ………………………………………………………………………………………………………………………………. 39

2-8 آشنایی با پلیمر و پایمریزاسیون      ………………………………………………………………………………………………………… 39

2-8-1 پلیمر چیست؟   ……………………………………………………………………………………………………………………………….. 39

2-8-2 انواع پلیمر ساختاری    ……………………………………………………………………………………………………………………… 39

2-8-3 بسپارها از نظر اثر پذیری در برابر حرارت به دو دسته تقسیم می شوند   ………………………………………………. 40

2-8-4 انواع پلیمرها بر اساس منبع تهیه    …………………………………………………………………………………………………….. 40

2-8-5 انواع روش های پلیمریزاسیون    ………………………………………………………………………………………………………… 40

2-8-5-1 پلیمریزاسیون افزایشی   ………………………………………………………………………………………………………………… 40

2-8-5-2 پلیمریزاسیون تراکمی    ………………………………………………………………………………………………………………… 41

2-9 پلیمرهای قالب مولکولی    ……………………………………………………………………………………………………………………… 41

2-9-1 مزایای پلیمرهای قالب مولکولی ………………………………………………………………………………………………………….. 42

2-9-2 عوامل سازنده یک پلیمر قالب مولکولی    ……………………………………………………………………………………………. 42

2-9-2-1 مونومر عاملی    ……………………………………………………………………………………………………………………………. 44

2-9-2-2 مولکول هدف(قالب)    …………………………………………………………………………………………………………………. 46

2-9-2-3 عامل اتصال عرضی     ………………………………………………………………………………………………………………….. 46

2-9-2-4 حلال     ……………………………………………………………………………………………………………………………………… 47

2-9-2-5 آغازگر     ……………………………………………………………………………………………………………………………………. 48

2-9-3 انواع پلیمرهای قالب مولکولی     ……………………………………………………………………………………………………….. 49

2-10 پلیمر قالب مولکولی کووالانسی    ………………………………………………………………………………………………………… 50

2-10-1 مزایای پلیمرهای قالب مولکولی کووالانسی   …………………………………………………………………………………….. 50

2-10-2 معایب  پلیمرهای قالب مولکولی کووالانسی    …………………………………………………………………………………… 50

2-11 پلیمرهای قالب مولکولی نیمه کووالانسی     ………………………………………………………………………………………….. 51

2-12 پلیمرهای قالب مولکولی غیر کووالانسی      ………………………………………………………………………………………….. 51

2-12-1 مراحل سنتز پلیمر قالب مولکولی      ……………………………………………………………………………………………….. 51

2-12-2 دلایلی که از روش غیر کووالانسی بیشتر استفاده می شود     ……………………………………………………………… 51

2-13 روش های تهیه پلیمر قالب مولکولی    ………………………………………………………………………………………………….. 52

2-13-1 پلیمریزاسیون توده ای    …………………………………………………………………………………………………………………. 52

2-13-2  روش پلیمریزاسیون رسوبی    ………………………………………………………………………………………………………… 52

2-13-3 پلیمریزاسیون با تورم چند مرحله ای    ……………………………………………………………………………………………. 53

2-13-4 پلیمریزاسیون سوسپانسیون    ………………………………………………………………………………………………………….. 53

2-13-5 روش پیوند زنی    ………………………………………………………………………………………………………………………….. 53

2-14 کاربرد پلیمرهای قالب مولکولی    ………………………………………………………………………………………………………… 53

2-14-1  کاربرد پلیمرهای قالب مولکولی برای ریز استخراج با فاز جامد (SPME)    ……………………………………… 54

2-15-1 کاربرد پلیمرهای قالب مولکولی در حسگرها    …………………………………………………………………………………. 54

2-15-2 کاربرد پلیمرهای قالب مولکولی در غشاء    ……………………………………………………………………………………….. 54

2-15-3 کاربرد پلیمرهای قالب مولکولی در کاتالیزگرها    ………………………………………………………………………………. 55

2-15-4 کاربرد پلیمرهای قالب مولکولی در کروماتوگرافی    …………………………………………………………………………… 55

فصل سوم : مطالعات تجربی      …………………………………………………………………………………………………………………… 57

3-1 مواد مصرفی    ……………………………………………………………………………………………………………………………………… 58

3-2 دستگاه وری    ……………………………………………………………………………………………………………………………………… 58

3-2-1 التراسونیک     ………………………………………………………………………………………………………………………………….. 58

3-2-2 pH متر     ………………………………………………………………………………………………………………………………………. 58

3-2-3 بن ماری     ……………………………………………………………………………………………………………………………………… 58

3-2-4 کروماتوگرافی گازی    GC ………………………………………………………………………………………………………………. 58

3-2-5 آون     …………………………………………………………………………………………………………………………………………….. 59

3-2-6 همزن مغناطیسی(هیتر)     …………………………………………………………………………………………………………………. 59

3-2-7 سرنگ SPME     …………………………………………………………………………………………………………………………… 59

3-2-8 دستگاه (IR)      ……………………………………………………………………………………………………………………………… 60

3-3 تهیه پلیمر قالب مولکولی   55…………………………………………………………………………………………………………………. 60

3-3-1 انتخاب عوامل    ……………………………………………………………………………………………………………………………….. 60

3-3-1-1 آنالیت یا نمونه     ………………………………………………………………………………………………………………………… 60

3-3-1-2 مونومر عاملی مناسب     ……………………………………………………………………………………………………………….. 60

3-3-1-3 عامل اتصال دهنده عرضی     ………………………………………………………………………………………………………… 61

3-3-1-4 حلال مناسب    ……………………………………………………………………………………………………………………………. 61

3-3-1-5 آغازگر      …………………………………………………………………………………………………………………………………… 62

3-3-2 روش سنتز پلیمر قالب مولکولی   ……………………………………………………………………………………………………….. 62

3-4 بهینه سازی شرایط جذب فتیل جیوه کلراید در روش ریز استخراج با پلیمر قالب مولکولی   ……………………….. 63

3-4-1 تعیین ماکزیمم طول موج جذب    ………………………………………………………………………………………………………. 63

3-4-2 بررسی اثر نمک    ……………………………………………………………………………………………………………………………. 64

3-4-3 بررسی اثر زمان     …………………………………………………………………………………………………………………………… 64

3-4-4 تاثیر pH محلول بر جذب پلیمر      ………………………………………………………………………………………………….. 65

3-4-5 شناسایی فنیل جیوه کلراید توسط دستگاه GC   …………………………………………………………………………………. 66

3-4-5-1 برنامه دمایی دستگاه GC برای فتالات ها     ………………………………………………………………………………….. 66

فصل چهارم : بحث و نتیجه گیری     …………………………………………………………………………………………………………….. 67

4-1 سنتز پلیمر قالب مولکولی و پلیمر شاهد     ……………………………………………………………………………………………… 68

4-1-1 پلیمریزاسیون پلیمر قالب مولکولی     …………………………………………………………………………………………………. 68

4-1-2 مکانیسم سنتز پلیمر قالب مولکولی    ………………………………………………………………………………………………….. 70

4-1-3 طیف های FT-IR از پلیمر MIP و NIP   ………………………………………………………………………………………. 71

4-2 بهینه سازی شرایط جذب فنیل جیوه کلراید توسط پلیمر قالب مولکولی    …………………………………………………. 72

4-2-1 اثر نمک بر جذب فنیل جیوه کلراید……………………………………………………………………………………………………. 72

4-2-2 اثر زمان بر جذب فنیل جیوه کلراید…………………………………………………………………………………………………….. 73

4-2-3 اثر pH محلول بر جذب پلیمر   ………………………………………………………………………………………………………… 74

4-2-4 شناسایی فنیل جیوه کلراید توسط دستگاه GC   …………………………………………………………………………………. 75

خلاصه   ………………………………………………………………………………………………………………………………………………………. 77

پیوست………………………………………………………………………………………………………………………………………………………….. 78

پیوست 1؛ طیف FT-IR از NIP، در محدوده 400-4000 cm-1 به روش قرص KBr   ………………………………… 78

پیوست 2؛ طیف FT-IR از MIP، در محدوده 400-4000 cm-1 به روش قرص KBr    ………………………………. 79

پیوست 3؛ طیف GC برای محلول 10 PPM فنیل جیوه کلراید……………………………………………………………………….. 80

پیوست 4؛ طیف GC برای محلول 40 PPM فنیل جیوه کلراید……………………………………………………………………….. 81

پیوست 5؛ طیف GC برای محلول 100 PPM فنیل جیوه کلراید…………………………………………………………………….. 81

پیوست 6؛تصویر TEM از  NIP،……………………………………………………………………………………………………………………..84

پیوست7؛تصویر TEMاز  MIP،……………………………………………………………………………………………………………………85

منابع …………………………………………………………………………………………………………………………………………………………….. 86

چکیده انگلیسی ……………………………………………………………………………………………………………………………………………. 91

فهرست اشکال

عنوان                                                                                                                                     صفحه

  • مراحل استخراج فاز جامد ………………………………………………………………………………………………………………. 26
  • نمودار پیشرفت میکرو استخراج با فاز جامد از سال 2000 ……………………………………………………………….   27
  • انواع روش های نمونه برداری در میکرو استخراج با فاز جامد A)نمونه برداری به صورت مستقیم B)از فضای فوقانی 29
  • نمایش پوشش های پلیمری بر اساس قطبیت………………………………………………………………………………………. 31
  • سرنگ SPME …………………………………………………………………………………………………………………………. 34
  • تصویر کلی از پلیمریزاسیون فالب مولکولی ……………………………………………………………………………………. 44
  • مونومرهای رایج برای تهیه پلیمرهای قالب مولکولی ………………………………………………………………………… 45
  • ساختار شیمیایی اتصال دهنده های عرضی استفاده شده در سنتز پلیمرهای قالب مولکولی …………………. 47
  • آغازگرهای رایج مورد استفاده در سنتز پلیمرهای قالب مولکولی ………………………………………………………. 49
  • طرح شماتیک سنتز پلیمر قالب مولکولی کووالانسی ………………………………………………………………………. 50
  • پلیمرهای قالب مولکولی در غشاء ………………………………………………………………………………………………….. 55
  • ساختار مونومر عاملی متاکریلیک اسید ……………………………………………………………………………………………… 60
  • ساختار اتصال دهنده عرضی اتیلن گلیکول دی متاکریلات ……………………………………………………………… 61
  • ساختار حلال مورد استفاده در این سنتز…………………………………………………………………………………………….. 62
  • ساختار آغازگر مورد استفاده در این سنتز …………………………………………………………………………………………. 62
  • مرحله آغاز پلیمریزاسیون افزایشی رادیکال آزاد MAA با بهره گرفتن از آغازگر AIBN …………………………. 69
  • مرحله انتشار پلیمریزاسیون افزایشی رادیکال آزاد MAA …………………………………………………………………. 69
  • مکانیسم پایان پلیمریزاسیون افزایشی رادیکال آزاد MAA به روش ترکیبی …………………………………………. 69
  • مکانیسم پایان پلیمریزاسیون افزایشی رادیکال آزاد MAA به روش تسهیم نامتناسب ……………………………. 70
  • طیف FT-IR …………………………………………………………………………………………………………………………….. 71

فهرست جداول

عنوان                                                                                                                 مقدمه

  • انواع فرم های جیوه در محیط زیست ……………………………………………………………………………………………….. 10
  • مروری بر تحقیقات گذشته در زمینه گونه شناسی جیوه …………………………………………………………………………… 20
  • پوشش های فایبری همراه با ضخامت و کاربرد ………………………………………………………………………………. 32
  • انواع فازهای پیوندی …………………………………………………………………………………………………………………… 39

(3-1)    بررسی اثر نمک بر جذب پلیمر قالب مولکولی…………………………………………………………………………………… 64

(3-2)   بررسی اثر زمان بر جذب پلیمر قالب مولکولی ……………………………………………………………………………………. 65

(3-3)   بررسی اثر pH روی جذب   ……………………………………………………………………………………………………………. 66

(3-4)    برنامه دمایی دستگاه GC ………………………………………………………………………………………………………………. 66

(3-5)    داده های دستگاه GC برای فنیل جیوه کلراید…………………………………………………………………………………… 66

(4-1)   درصد استخراج برای فنیل جیوه کلراید بر اساس نمک  …………………………………………………………………….. 73

(4-2)   درصد استخراج برای فنیل جیوه کلراید بر اساس زمان ……………………………………………………………………….. 73

  • میزان استخراج پلیمر در pH=4-8 …………………………………………………………………………………………………. 74
  • داده های دستگاه GC برای فنیل جیوه کلراید ………………………………………………………………………………….. 75

فهرست منحنی ها

عنوان                                                                                                                                    مقدمه

(4-2)  درصد استخراج  فنیل جیوه کلراید  بر اساس زمان………………………………………………………………………………. 74

  • درصد استخراج فنیل جیوه کلراید  بر حسب pH  …………………………………………………………………………… 75
  • سطح زیر پیک فنیل جیوه کلراید در غلظت های متفاوت …………………………………………………………………… 75

چکیده

در این پروژه پلیمر قالب مولکولی جهت استخراج انتخابی فنیل جیوه کلراید  تهیه شد. برای تهیه این پلیمر از متاکریلیک اسید (مونومر عاملی)،  اتیلن گلیکول دی متاکریلات (عامل برقراری اتصالات عرضی)،  2وˊ2-آزوبیس ایزو بوتیرو نیتریل (آغازگر)،  فنیل جیوه کلراید  (مولکول هدف) و کلروفرم (حلال) انجام شد. مواد اولیه پلیمریزاسیون در لوله های موئین قرار داده می شود. پس از اعمال عملیات حرارتی در نهایت لوله موئین را داخل اسید هیدرو فلوئورید انداخته تا شیشه ی آن را خورده و فیبر بیرون بییاید. حاصل پلیمریزاسیون رادیکالی تشکیل فیبر لوله ای پلیمر قالب مولکولی غیر کوالانسی (MIP) می باشد. به دلیل وجود بر همکنش های غیر کوالانسی بین مولکول هدف و مونومر عاملی مولکول هدف به کمک شستشو حذف می شود و پلیمر قالب گیری شده بدست می آید.

جهت مقایسه کارایی این پلیمر، پلیمر دیگری نیز با همین روش و همین مواد اولیه ساخته شد ( NIP پلیمر ناظر)،  تنها با این تفاوت که پلیمر جدید فاقد مولکول هدف در ساختار خود است. طیف هر دو پلیمر سنتز شده از طریق اسپکتروسکوپی FT-IR مورد بررسی قرار گرفت هر دو پلیمر دارای شباهت ساختاری هستند همچنین وجود حفره در پلیمر قالب مولکولی با مقایسه دو طیف قابل توجیح می‌باشد. پلیمر قالب مولکولی سنتز شده با پلیمر شاهد مقایسه شد. خواص پلیمر قالب مولکولی،  قابلیت تشکیل پیوند و خاصیت گزینش پذیری پلیمر مورد نظر مورد بررسی قرار گرفت.  همچنین جهت بهینه سازی شرایط جذب پارامترهای مختلف از قبیل pH،  زمان جذب،  دما و غلظت نمک بررسی شدند.

کلمات کلیدی:پلیمر قالب مولکولی، فنیل جیوه کلراید

فصل اول :

 

گونه شناسی جیوه و کاربرد آن در  صنعت  و ایجاد بیماری ها

 

تعریف گونه شناسی

گونه شناسی [1] كلمه ای است كه از علوم بیولوژیكی قرض گرفته شده است و به صورت یک مفهوم در شیمی تجزیه در آمده است و بیانگر فرم شیمیایی ویژه یک عنصر است كه بایستی بطور منفرد مورد بررسی قرار گیرد.

دلیل تاكید بر گونه شناسی بدین جهت است كه مشخصات یک گونه از یک عنصر ممكن است چنان تاثیر شدیدی بر روی سیستمهای زنده بگذارد (حتی در مقادیر بسیار اندك) كه تعیین غلظت كل عنصر ارزش كمی در برابر تعیین غلظت آن گونه مورد نظر خواهد داشت.

نمونه مهم از این نوع جیوه و قلع می باشند كه گونه های معدنی این عناصر بسیار بی خطرتر از فرم آلی آنها می باشد.

موضوعات: بدون موضوع  لینک ثابت
 [ 11:04:00 ب.ظ ]