شهریور    1391





فهرست مطالب
عنوان                                                                                                 صفحه
چکیده -بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—— 1
فصل اول « طرح مسئله »
1-1 مقدمه-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد— 3
1-2 بیان مسئله—————- 4
1-3 اهداف تحقیق————– 5
1-4 کاربرد جداگرهای لرزه­ای در کشورهای مختلف— 7
فصل دوم « عملکرد لرزه­ای پل­ها »
2-1 عملکرد پل­ها در زلزله­های اخیر و روش­های به­سازی آن­هابلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———- 13
2-1-1 کلیات-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 13
2-1-2 خسارت­های وارده به پل­ها در زلزله­های اخیر   بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————— 14
2-1-3 علل عمده آسیب­پذیری لرزه­ای و روش­های ترمیم و بهسازی پل­هابلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 18
2-1-4 جداسازی لرزه­ای به عنوان یک روش مقاوم­سازیبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————– 21
2-2 پاسخ پل‌های جداسازی شده تحت زمین لرزه‌های نزدیک گسلبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—– 27
2-2-1 تحلیل پاسخ زلزله——– 29
2-3 بررسی اثرات زلزله­های نزدیک گسل بر روی سازه­های مهندسیبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—– 33
2-3-1 اصول اساسی و مشخصات زمین لرزه‌های نزدیک گسلبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———- 33
2-3-1-1 مشخصات زمین لرزه‌های نزدیک گسل—– 34
2-3-1-2 تفاوت کاربرد جداسازی در پل­ها با ساختمان­هابلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————– 51
2-4 جداسازی لرزه­ای پل­ها و انواع تکیه­گاه­های جداگر- 53
2-4-1 مفهوم و مکانیزم جداسازی لرزه­ای پل­ها—— 53
2-4-2 مقایسه انواع جداگرهای لرزه­ای و تجهیزات میرایی الحاقی مناسب برای هرکدام —– 55
فصل سوم « مطالعات تحلیلی و آزمایش­گاهی جداسازی لرزه­ای پل­ها »
3-1 مقدمه-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد— 62
3-2 مطالعات تحلیلی و پارامتریک- 62
3-3 مطالعات آزمایشگاهی——– 64
3-4 ضوابط آیین­نامه­ای در مورد پل­های جداسازی شدهبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————— 67
3-4-1 مقدمه-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد 67
3-4-2 ضوابط آیین­نامه آشتو AASHTO در طراحی جداسازی لرزه­ای پل­های بزرگراهی—— 67
3-4-3 اثر بار زنده در طراحی لرزه­ای پل­ها———- 73
فصل چهارم « ارزیابی اجرایی »
4-1 فرایند تحلیل————– 75
4-2 استفاده از میراگر الحاقی در پل‌ها————– 75
4-3 تحلیل دینامیکی غیرخطی پل­های جداسازی شدهبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————— 88
4-3-1 مقدمه-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد 88
4-3-2 بررسی عددی کاربرد جداگرهای LRB و FPS — 89
4-3-2-1 مدل­سازی پل­های جداسازی شده ——– 90
4-3-2-2 مدل­سازی پل جداسازی نشده ———– 91
4-3-3 تحلیل تاریخچه زمانی غیرخطی ———— 92
4-3-3-1 مقدمه ————– 92
4-3-3-2 طراحی جداگرهای لرزه­ای ————– 93
4-3-3-2-1 فلسفه سیستم‌های جداساز لرزه‌ای —– 93
4-3-3-2-2 طراحی جداسازهای لاستیکی – سربی — 93
4-3-3-2-3 تحلیل ———— 97
4-3-3-2-4 طراحی ———– 98
4-3-3-2-5 مدل­سازی جداگرهای لرزه­ای———– 102
4-3-3-3 مقیاس کردن شتاب­نگاشت­ها ———— 103
4-3-3-4 مدل­سازی سیستم پل جداسازی نشده—– 106
4-3-3-5 مقایسه جداگرهای طراحی شده———– 107
4-3-3-6 بررسی نتایج تحلیل­های دینامیکی ——– 108
4-3-3-6-1 بررسی شتاب وارد بر عرشه ———– 108
4-3-3-6-2 بررسی تغییرمکان افقی جداساز——– 110
4-3-3-6-3 بررسی برش پایه —- 111
فصل پنجم « نتیجه ­گیری و ارائه پیشنهادات »
5-1 مقدمه -بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 114
5-2 نتیجه ­گیری————— 115
5-3 پیشنهادات—————- 117
منابع-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد——– 122
فهرست جداول
عنوان                                                                                                 صفحه
جدول 2-1)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 42
جدول 2-2)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 43
جدول 2-3)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 43
جدول 2-4)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 47
جدول 2-5)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 47
جدول 2-6)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 47
جدول 2-7)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 48
جدول 2-8) انواع جداگرهای لرزه‌ای—————- 56
جدول 2-9) مزایا و معایب جداگرهای لرزه‌ای——– 57
جدول 2-10) وسایل مکمل برای تامین میرایی جداگرهابلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————– 60

مقالات و پایان نامه ارشد

 

جدول 4-1)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 88
جدول 4-2)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 89
فهرست شکل ها
عنوان                                                                                                 صفحه
شکل 2-1: شکل‌های خسارت به علت نشیمنگاه ناکافی (راست: زلزله 1999 تایوان، چپ: زلزله 1995 کوبه)   16
شکل 2-2: شکل‌های افزایش جابه‌جایی‌های پل به علت روانگرایی (زلزله 1995 کوبه)——- 16
شکل 2-3: راست: شکل زوال ستون به علت قلاب ناکافی (زلزله 1994 نرتریج) ، چپ: فروریختن دهانه به علت چرخش پایه‌ها و فرونشست کوله‌ها (زلزله 1999 تایوان)——- 16
شکل 2-4: شکل‌های زوال ستون پل به علت مقاومت خمشی پایین (زلزله 1971 سان‌فراندو)- 17
شکل 2-5: شکل‌های زوال ستون‌های مختلف به علت ضعف طراحی (زلزله 1994 نرتریج)— 17
شکل 2-6: شکل شکست پایه پل به علت عدم شکل‌پذیری خمشی (زلزله 1999 تایوان)—– 17
شکل 2-7: شکل شکست برشی ستون (زلزله 1999 تایوان)بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———— 18
شکل 2-8: شکل‌های پل Bai-Ho در تایوان (بالا) و سیستم جداسازی آن (پایین)———– 23
شکل 2-9: شکل‌های روگذر Bolu در ترکیه (راست) و زوال بالشتک آن (چپ)————- 24
شکل 2-10: شکل‌های پل Kodiac-Near Island که در آن 15 عایق لرزه‌ای از نوع بالشتک پاندول اصطکاکی بکار رفته است (آلاسکا)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—– 24
شکل 2-11: شکل‌های پل Benicia-Martinez که در آن به ازای هر پایه دو عایق لرزه‌ای از نوع بالشتک پاندولی اصطکاکی بکار رفته است (کالیفرنیا)——– 25
شکل 2-12: شکل‌های پل American River که در آن 48 عایق لرزه‌ای از نوع بالشتک پاندول اصطکاکی به‌کار رفته است (کالیفرنیا)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد—- 25
شکل 2-13: شکل‌های پل I-40 و عایق لرزه‌ای به‌کار رفته در آن که از نوع بالشتک پاندول اصطکاکی می‌باشد (روی رود Mississipi)-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد— 25
شکل 2-14: (a) ترک‌ها و خرد شدگی گوشه‌های بلوک‌ها در بالای پایه‌ها، (b) شکستگی دیوارهای باله‌ای در قسمت غربی-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———— 28
شکل 2-15: طیف (با 5% میرایی) برای دو مولفه افقی از ایستگاه‌های (a) هوارگردی و (b) سلفوس. که برای مقایسه طیف پاسخ آیین‌نامه اروپا 8، در قسمت I  و نوع خاک A، نمایش داده شده‌اندبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد– 29
شکل 2-16: حداکثر تغییرمکان متقاطع روسازه در زمانی‌که توسط هر دوی بهترین و بدترین مولفه‌های سلفوس و هوارگردی تحریک شود. و هنگامی‌که توسط تاریخچه زمانی شبیه‌سازی شده EC8 تحریک شود: (a) مدل با میلگردهای کششی، (b) مدل بدون میلگردهای کششی——— 30
شکل 2-17: حداکثر نیروی برشی در نگه‌دارنده‌ها هنگامی‌که توسط بدترین مولفه سلفوس و هوارگردی و تاریخچه زمانی EC8 تحریک شود. ظرفیت‌های مقاومت دیوارهای کناری (تکیه‌گاه‌های 1 و 9) برابر 1700 کیلونیوتن و ظرفیت مقاومت تکیه‌گاه‌های متقاطع (تکیه‌گاه‌های 2 تا 8) برابر 3200 کیلونیوتن می‌باشد.بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———– 31
شکل 2-18: حداکثر لنگر حول محور قائم در عرشه پل برای حالات مختلف، هنگامی‌که توسط بدترین مولفه از (a) تاریخچه زمانی هوارگردی، و (b) تاریخچه زمانی سلفوس، تحریک شود.بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———- 32
شکل 2-19: حداکثر لنگر خمشی حول محور قائم. بار مبتنی بر بدترین مولفه بین تاریخچه‌های زمانی (a) هوارگردی، (b) سلفوس، می‌باشد.————— 33
شکل 2-20: مقایسه پاسخ زلزله بم در حوزه نزدیک و دور برای پریودهای مختلف———- 35
شکل 2-21: مقایسه پاسخ زلزله امپریال والی در حوزه نزدیک و دور برای پریودهای مختلف– 35
شکل 2-22: مقایسه نتایج حوزه نزدیک و دور گسل برای پریودهای مختلف————— 36
شکل 2-23: الف) میانگین و میانگین به علاوه انحراف استاندارد تغییرمکان نسبی طبقات در روش تحلیل دینامیکی غیرخطی. ب) مقایسه میانگین و میانگین به علاوه انحراف استاندارد در روش دینامیکی غیرخطی با تغییرمکان نسبی طبقات بر مبنای روش استاتیکی 2800، استاتیکی و دینامیکی خطی دستورالعمل بهسازی.——– 40
شکل 2-24: (a) چرخه هیستریتیک نیرو- تغییرمکان جانبی، و (b) سطح تسلیم در جهات جانبی جداساز لاستیکی- سربی-بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———— 42
شکل 2-25: تاریخچه‌های زمانی شتاب و سرعت برای (a) زمین‌لرزه نزدیک گسل ثبت شده در ایستگاه TCU052 در زلزله Chi-Chi، و (b) زمین لرزه دور از گسل TCU052 ثبت شده در همان ایستگاه از یک رخداد دیگر.        44
شکل 2-26: مقایسه طیف شتاب نرمال شده (PGA زمین لرزه در 1g مقیاس شده است) برای زمین لرزه نزدیک گسل (خط پررنگ) و همان طیف برای زمین لرزه دور از گسل (خط تیره)بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———- 44
شکل 2-27: پاسخ‌های برش پایه در جهت طولی (a) پل A جداسازی نشده، (b) پل A جداسازی شده تحت زلزله نزدیک گسل و دور از گسل که در ایستگاه TCU 102 با PGA برابر 0.34g ثبت شده است.———– 45
شکل 2-28: پا پاسخ‌های برش پایه در جهت طولی (a) پل B جداسازی نشده، (b) پل B جداسازی شده تحت زلزله نزدیک گسل و دور از گسل که در ایستگاه TCU 102 با PGA برابر 0.34g ثبت شده است.———– 45
شکل 2-29: پاسخ‌های برش پایه در جهت طولی در شاه‌تیر (a) پل A جداسازی نشده، (b) پل A جداسازی شده تحت زلزله نزدیک گسل و دور از گسل که در ایستگاه TCU 102 با PGA برابر 0.34g ثبت شده است. —- 46
شکل 2-30: پاسخ‌های تغییرمکان نسبی جانبی جداساز لاستیکی سربی برای (a) پل A جداسازی شده (پرود کوتاه)، و (b) پل B جداسازی شده (پریود متوسط)، توسط زمین لرزه دور از گسل با PGA برابر با 0.34g.— 46
شکل 2-31: پاسخ‌های تغییرمکان نسبی جانبی جداساز لاستیکی سربی برای (a) پل A جداسازی شده (پرود کوتاه)، و (b) پل B جداسازی شده (پریود متوسط)، توسط زمین لرزه نزدیک گسل با PGA برابر با 0.34g.— 47
شکل 2-32: رابطه بین برش پایه حداکثر و (a) PGV/PGA، (b) انرژی زمین لرزه E‌‌i، و © سرعت طیفی Sv در پریود 0:78 ثانیه برای پل A جداسازی شده (تناوب کوتاه) با زمین‌لرزه‌های ورودی نزدیک گسل که در حین زلزله Chi-Chi 49
شکل 2-33: رابطه بین برش پایه حداکثر و (a) PGV/PGA، (b) انرژی زمین لرزه E‌‌i، و © سرعت طیفی Sv در پریود 1:12 ثانیه برای پل B جداسازی شده (تناوب متوسط) با زمین‌لرزه‌های ورودی نزدیک گسل که در حین زلزله Chi-Chi        49
شکل 2-34: رابطه بین تغییرمکان طولی حداکثر و (a) PGV/PGA، (b) انرژی زمین لرزه E‌‌i، و © سرعت طیفی Sv در پریود 0:78 ثانیه برای پل A جداسازی شده (تناوب کوتاه) با زمین‌لرزه‌های ورودی نزدیک گسل—- 50
شکل 2-35: رابطه بین تغییرمکان طولی حداکثر شاه‌تیر و (a) PGV/PGA، (b) انرژی زمین لرزه E‌‌i، و © سرعت طیفی Sv در پریود 1:12 ثانیه برای پل B جداسازی شده (تناوب متوسط) با زمین‌لرزه‌های ورودی نزدیک گسل 50
شکل 2-36: رابطه بین نسبت تنزل برش پایه و مقدار PGV/PGA برای (a) پل A (تناوب کوتاه)، و (b) پلB (تناوب متوسط) توسط زمین لرزه‌های دور از گسل که در حین زلزله Chi-Chi تایوان ثبت شده‌اند.———– 51
شکل 2-37: نمونه‌ای از یک پل جداسازی شده لرزه‌ای- 52
شکل 2-38: جزئیات محل اتصال عرشه پل به کوله آن- 53
شکل 3-1: شکل شماتیک مدل پل با مقیاس ——- 64
شکل 3-2: شکل جزئیات قطعه جداگر مورد بررسی— 65
شکل 3-3: شکل مقایسه پاسخ زیرسازه بین پل جداسازی شده (پایین) و پل معمولی (بالا)— 66
شکل 3-4: سختی تانژانتی سیستم جداسازی——– 71
شکل 3-5: شکل رابطه نیرو- تغییرمکان سیستم‌های با نیروی مقاوم ثابتبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد- 71
شکل 4-1: میراگر سیال نصب شده در پل Seo-Hae— 76
شکل 4-2: نمای پل Seo-Hae—– 76
شکل 4-3: موقعیت نصب میراگرهای سیال لزج——- 76
شکل 4-4: پل Ok- Yeo———- 77
شکل 4-5: نمای پل و محل نصب میراگر———— 77
شکل 4-6: میراگر نصب شده در پل Ok-Yeo——— 77
شکل 4-7: میراگرهای مورد استفاده در پل Ok –Yeo– 78
شکل 4-8: پل Chun-Su——— 78
شکل 4-9: میراگر نصب شده در پل Chun-Su——– 78
شکل 4-10: پل E-Po———– 79
شکل 4-11: میراگر نصب شده در تکیه‌گاه پل E-Po— 79
شکل 4-12: میراگرهای طولی و عرضی در محل درز انبساطبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد———– 79
شکل 4-13: پل Kang-Dong—— 80
شکل 4-14: میراگر نصب شده در پل Kang- Dong—- 80
شکل 4-15: میراگر عرضی نصب شده در پل Dong-Yunبلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد————– 80
شکل 4-16: جابه‌جایی پل در حالت‌های مختلف میرایی برای تکیه‌گاه‌های مختلف تحت زلزله Imperial Valley 82
شکل 4-17: جابه‌جایی پل در حالت‌های مختلف میرایی برای تکیه‌گاه‌های مختلف تحت زلزله Northridge     82
شکل 4-18: شتاب وارده به پل در حالت‌های مختلف میرایی برای تکیه‌گاه‌های مختلف تحت زلزله Imperial Valley     83
شکل 4-19: شتاب وارده به پل در حالت‌های مختلف میرایی برای تکیه‌گاه‌های مختلف تحت زلزله Northridge         84
شکل 4-20: جابه‌جایی تحمیلی به پل تحت زلزله Imperial Valley برای حالت‌های مختلف میرایی     84
شکل 4-21: جابه‌جایی تحمیلی به پل تحت زلزله Northridge برای حالت‌های مختلف میرایی 84
شکل 4-22: شتاب تحمیلی به پل تحت زلزله Imperial Valley برای حالت‌های مختلف میرایی 85
شکل 4-23: شتاب تحمیلی به پل تحت زلزله Northridge برای حالت‌های مختلف میرایی— 85
شکل 4-24: پیکربندی رایج جداساز و تجهیزات میرایی الاستیک الحاقی (SED : میراگر الاستیک الحاقی)     87
 
1-1 مقدمه
تقریباً در تمامی زلزله­های بزرگ، تخریب پل­ها در اثر فروریزش و تخریب پایه­ها مشاهده شده است. آسیب دیدگی پل­ها در زلزله­های سال 1994 نرتریج و سال 1995 کوبه به همگان ثابت کرد که معیار مقاومت به تنهایی هرگز برای تضمین ایمنی پل­ها و عملکرد مناسب آن­ها در حین زلزله کفایت نمی­ کند. تا به­حال تحقیقات بسیاری با هدف یافتن روش­های منطقی برای محافظت پل در زلزله­های شدید انجام شده است که در این میان جداسازی لرزه­ای راه حلی مناسب برای کاهش نیروهای ناشی از زلزله تا حد ظرفیت الاستیک اعضای سازه می­باشد. بدین ترتیب اعضای سازه پل از ورود به ناحیه غیرخطی مصون مانده که این به معنای سالم ماندن سازه پل در حین زلزله می­باشد.
ایده اصلی در جداسازی لرزه­ای، کاهش فرکانس پایه ارتعاش سازه و رساندن آن به مقداری کمتر از فرکانس­های حاوی انرژی غالب زلزله می­باشد. به بیانی دیگر، جداسازی لرزه­ای موجب افزایش پریود ارتعاشی سازه می­ شود و آن را از پریودهای حاوی انرژی غالب زلزله دور می­ کند. بدین ترتیب انرژی ورودی به سازه ناشی از زلزله با جداسازی لرزه­ای کاهش می­یابد. دیگر مزیت جداسازی لرزه­ای فراهم نمودن وسیله­ای جهت اتلاف انرژی می­باشد که انرژی وارد شده به سازه در نقاط معدود و به­صورت کنترل شده تلف شود. بدین ترتیب تخریب و آسیب دیدگی در نقاطی خاص متمرکز شده و امکان تعویض این قطعه پس از زلزه وجود خواهد داشت.
در حال حاضر پل­های بزرگراهی ایران دارای سه نوع عمده تکیه­گاه فلزی، بتنی و الاستومری می­باشند که از میان تکیه­گاه­های الاستومری به دلایل فنی و اقتصادی ذکر شده در ذیل بخش عمده­ای از تکیه­گاه­های پل­ها را تشکیل می­دهند:

  1. دارای وزنی سبک بوده و به راحتی نصب می­شوند علاوه بر این، فضای کمی را اشغال می­ کنند.
  2. نیاز به تعمیرات ندارند.
  3. دچار زنگ زدگی نمی­شوند و دارای قطعات متحرک نیستند.
  4. با سطوح نامنظم تماس خوبی برقرار می­ کنند.
  5. در هر دو جهت امکان تغییرشکل و حرکت دارند.
  6. میرایی ارتعاشی خوبی دارند.
  7. صرفه­جویی اولیه و دراز مدت در هزینه و زمان دارند.
  8. در برابر هوازدگی مقاومت خوبی دارند.
  9. در برابر مواد نفتی و شیمیایی از مقاومت خوبی برخوردارند.

 
1-2 بیان مسئله
اما آیا این جداگرهای الاستومری می­توانند نقش یک جداگر لرزه­­ای را درحین زلزله برای افزایش پریود سازه پل و اتلاف انرژی زلزله در داخل خود بازی کنند؟
جواب این سوال نیاز به تحقیقات بیشتر و انجام تست­های آزمایشگاهی و مدل­سازی­های تحلیلی اجزاء محدودی دارد که همراه با درک و شناخت کافی از رفتار الاستومرها و مدل­سازی آن­ها می­باشد که متاسفانه تا به­حال در کشور انجام نگرفته است. در واقع بررسی کفایت تکیه­گاه­های الاستومری جهت جداسازی لرزه­ای و مطالعه رفتار و عملکرد لرزه­ای آن­ها در حین وقوع زلزله امری واجب بوده که بایستی به آن اهتمام ورزید.
متاسفانه در آزمایش­های انجام شده بر روی تکیه­گاه پل­ها، تنها هدف به­دست آوردن مدول برشی الاستیک (اولیه) نشیمن در دو جهت طولی و عرضی و سفتی فشاری آن­ها بوده است. لذا این آزمایش­ها به هیچ عنوان اطلاعاتی در مورد رفتار غیرخطی این نشیمن­ها در اختیار قرار نمی­دهند. این در حالیست که حتی استاندارد ملی ایران شماره 6583 با عنوان ((لاستیک- بالشتک­های زیرسری پل- ویژگی­ها و روش­های آزمون)) با ذکر روشی مطابق با استاندارد ISO 6446 و DIN 4114-140 نحوه به­دست آوردن منحنی تغییرات تنش برشی بر حسب کرنش برشی برای نشیمن­ها را بیان می­ کند.
در این تحقیق به بررسی آزمایشگاهی خواص جداگرهای الاستومتری که امکان ساخت و تولید انبوه آن­ها در کشور وجود دارد پرداخته و همچنین مبانی طراحی این جداگرها را بر طبق آیین نامه آشتو که متداول­ترین آیین نامه در زمینه طراحی پل­ها می­باشد، ارائه داده و با اعمال این جداگرها به چندین پل موجود، تاثیر پارامترهای مختلف این جداگرها مانند میزان سختی اولیه، سختی ثانویه و نیروی تسلیم آن­ها در بهبود رفتار لرزه­ای پل­ها بررسی عددی خواهند شد. علاوه بر

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...